58 resultados para Ocean outfalls

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In monsoon regions, the seasonal migration of the intertropical convergence zone (ITCZ) is manifested as a seasonal reversal of winds. Most of the summer monsoon rainfall over India occurs owing to synoptic and large-scale convection associated with the continental ITCZ (Fig. 1). We have investigated the interaction between these large-scale convective systems and the ocean over which they are generated1â3, concentrating on the relationship between organized convection over the Indian Ocean and sea surface temperature (SST). We report here that on a monthly basis the degree of cloudiness correlates well with SST for the relatively colder oceans, but when SST is maintained above 28 °C it ceases to be an important factor in determining the variability of cloudiness. Over the major regions of convection east of 70°E, which are warm year after year, the observed cloudiness cannot be correlated with variations in SST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new species of Ptychozoon is described from the central portion of the Nicobar Archipelago, Bay of Bengal, India. It has been formerly referred to P. kuhli, a species widely distributed in Sundaland. Ptychozoon nicobarensis sp. nov. reaches an SVL of 100.3 mm, and is diagnosable from congeneric species in showing the following combination of characters: dorsum with a tan vertebral stripe, lacking dark transverse bars; supranasals in contact; cutaneous expansions on sides of head; absence of predigital notch in preantebrachial cutaneous expansion; imbricate parachute support scales; four irregular rows of low, rounded enlarged scales on dorsum; 20-29 scales across widest portion of tail terminus; three indistinct chevrons on dorsum; 7-11 pairs of preanal pores; femoral pores absent; tail with an expanded terminal flap and weak lobe fusion at proximal border of tail terminus. The curious distribution of the new species, centred around the central Nicobars is speculated to be the result of competition with and/or predation by large gekkonid species, to the north (Gekko verreauxi) and south (G. smithii) of the group of islands occupied by the new Ptychozoon from the central Nicobars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The normal-mode solution to the problem of acoustic wave propagation in an isovelocity ocean with a wavy surface is considered. The surface wave amplitude is assumed to be small compared to the acoustic wavelength, and the method of multiple scales is employed to study the interaction between normal-mode acoustic waves and the surface waves. A nonresonant interaction causes small fluctuations of the amplitude and phase of the acoustic wave at a rate dependent on the frequency of the surface wave. Backscatter occurs if the wavenumber of the surface wave is larger than that of the acoustic wave. The interaction becomes resonant if appropriate phase-matching conditions are satisfied. In this case, two acoustic normal modes get coupled, resulting in a large-scale periodic exchange of energy from one mode to another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent laboratory investigations have shown that rotation and (streamwise) curvature can have spectacular effects on momentum transport in turbulent shear flows. A simple model that takes account of these effects (based on an analogy with buoyant flows) utilises counterparts of the Richardson number Rg and the Monin-Oboukhov length. Estimates of Rg for meanders in ocean currents like the Gulf Stream show it to be of order 1 or more, while laboratory investigations reveal strong effects even at |Rg|∼0·1. These considerations lead to the conclusion that at a cyclonic bend in the Gulf Stream, a highly unstable flow in the outer half of the jet rides over a highly stable flow in the inner half. It is conjectured that the discrepancies noticed between observation and the various theories of Gulf Stream meanders, and such phenomena as the observed detachment of eddies from the Gulf Stream, may be due to the effects of curvature and rotation on turbulent transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff int the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is to strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subspace intersection method (SIM) provides unbiased bearing estimates of multiple acoustic sources in a range-independent shallow ocean using a one-dimensional search without prior knowledge of source ranges and depths. The original formulation of this method is based on deployment of a horizontal linear array of hydrophones which measure acoustic pressure. In this paper, we extend SIM to an array of acoustic vector sensors which measure pressure as well as all components of particle velocity. Use of vector sensors reduces the minimum number of sensors required by a factor of 4, and also eliminates the constraint that the intersensor spacing should not exceed half wavelength. The additional information provided by the vector sensors leads to performance enhancement in the form of lower estimation error and higher resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, airsea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August. Citation: Vinayachandran, P. N., J. Kurian, and C. P. Neema (2007), Indian Ocean response to anomalous conditions in 2006, Geophys. Res. Lett., 34, L15602, doi:10.1029/2007GL030194.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equatorial Indian Ocean (EIO) exhibited anomalous conditions characteristic of an Indian Ocean dipole (IOD) during 2006. The eastern EIO had cold sea surface temperature anomalies (SSTA), lower sea level, shallow thermocline and higher chlorophyll than normal. The anomalies in the east, restricted to the south of the equator, were highest off Sumatra. The western pole of the IOD was marked by warm SSTA and deeper thermocline with maxima on either side of the equator. An ocean general circulation model of the Indian Ocean forced by QuikSCAT winds reproduces the IOD of 2006 remarkably well. The switch over to cooling in the east and warming in the west happened during May and July respectively. In the east, air-sea heat flux initiated cold SSTA in the model which were sustained later by oceanic processes. In the west, surface heat fluxes and horizontal advection caused warm SSTA and contribution by the latter decreased after August.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Ocean General Circulation Model of the Indian Ocean with high horizontal (0.25 degrees x 0.25 degrees) and vertical (40 levels) resolutions is used to study the dynamics and thermodynamics of the Arabian Sea mini warm pool (ASMWP), the warmest region in the northern Indian Ocean during January-April. The model simulates the seasonal cycle of temperature, salinity and currents as well as the winter time temperature inversions in the southeastern Arabian Sea (SEAS) quite realistically with climatological forcing. An experiment which maintained uniform salinity of 35 psu over the entire model domain reproduces the ASMWP similar to the control run with realistic salinity and this is contrary to the existing theories that stratification caused by the intrusion of low-salinity water from the Bay of Bengal into the SEAS is crucial for the formation of ASMWP. The contribution from temperature inversions to the warming of the SEAS is found to be negligible. Experiments with modified atmospheric forcing over the SEAS show that the low latent heat loss over the SEAS compared to the surroundings, resulting from the low winds due to the orographic effect of Western Ghats, plays an important role in setting up the sea surface temperature (SST) distribution over the SEAS during November March. During March-May, the SEAS responds quickly to the air-sea fluxes and the peak SST during April-May is independent of the SST evolution during previous months. The SEAS behaves as a low wind, heat-dominated regime during November-May and, therefore, the formation and maintenance of the ASMWP is not dependent on the near surface stratification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mid-December 2006 to late January 2007 flood in southern Peninsular Malaysia was the worst flood in a century and was caused by three extreme precipitation episodes. These extreme precipitation events were mainly associated with strong northeasterly winds over the South China Sea. In all cases, the northeasterlies penetrated anomalously far south and followed almost a straight trajectory. The elevated terrain over Sumatra and southern Peninsular Malaysia caused low-level convergence. The strong easterly winds near Java associated with the Rossby wave-type response to Madden-Julian Oscillation (MJO) inhibited the counter-clockwise turning of the northeasterlies and the formation of the Borneo vortex, which, in turn, enhanced the low-level convergence over the region. The abrupt termination of the Indian Ocean Dipole (IOD) in December 2006 played a secondary role as warmer equatorial Indian Ocean helped in the MJO formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to recent estimates, the annual total continental runoff into the Bay of Bengal (BoB) is about 2950 km 3, which is more than half that into the entire tropical Indian Ocean (IO). Here we use climatological observations to trace the seasonal pathways of near surface freshwater from BoB runoff and Indonesian Throughflow (ITF) by removing the net contribution from precipitation minus evaporation. North of 20 degrees S, the amount of freshwater from BoB runoff and ITF changes with season in a manner consistent with surface currents from drifters. BoB runoff reaches remote regions of the Arabian Sea; it also crosses the equator in the east to join the ITF. This freshwater subsequently flows west across the southern tropical IO in the South Equatorial Current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of narrowband CFAR (constant false alarm rate) detection of an acoustic source at an unknown location in a range-independent shallow ocean is considered. If a target is present, the received signal vector at an array of N sensors belongs to an M-dimensional subspace if N exceeds the number of propagating modes M in the ocean. A subspace detection method which utilises the knowledge of the signal subspace to enhance the detector performance is presented in thisMpaper. It is shown that, for a given number of sensors N, the performance of a detector using a vector sensor array is significantly better than that using a scalar sensor array. If a target is detected, the detector using a vector sensor array also provides a concurrent coarse estimate of the bearing of the target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homogencous upper air data for 50 years (1949-1998) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project, sea surface temperatures and sea level pressure are used to bring out the three dimensional structure of two dominant decadal/multi-decadal variations in the tropics. The global three dimensional modes represent generalized forms of inter-decadal modes studied earlier only with surface data. In the vertical, both modes show approximate first baroclinic structures over the tropics. The Walker circulation associated with the multidecadal mode has a wavenumber two structure in the zonal direction. It is shown that the magnitude of major ascending and descending motions associated with the multi-decadal Hadley and Walker circulations, are comparable to those associated with the dominant inter-annual mode. Implications of these large scale global circulations associated with the low frequency oscillations in modulating regional climate on a inter-annual time scale are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of convergence feedback on the stability of a coupled ocean‐atmosphere system is studied using model III of Hirst (1986). It is shown that the unstable coupled mode found by Hirst is greatly modified by the convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes have very weak dependence on the wave number. These results may explain the behaviour of some coupled models and to some extent provide a mechanism for the observed aperiodicity of the El‐Nino and Southern Oscillation (ENSO) events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Southern Ocean Pilot cruise covering the latitudes from 10 degrees N to 56 degrees S in the open Indian Ocean was carried out during January February 2004. Surface and upper air data collected during this cruise are reported here. It is shown that the broad features of the atmosphere, in particular that of temperature, follow the tropical and mid-latitude weather expected during January February in this region. However, the atmospheric boundary-layer shows large variations, both in its height and structure between tropics and high latitudes. Strong influence of the surface heat flux on boundary layer structure is clearly seen. Humidity field reveals several local maxima and minima, suggesting a laminated atmosphere with air from different sources moving almost unmixed in adjacent layers.