7 resultados para Occlusion Culling
em Indian Institute of Science - Bangalore - Índia
Resumo:
Computer Vision has seen a resurgence in the parts-based representation for objects over the past few years. The parts are usually annotated beforehand for training. We present an annotation free parts-based representation for the pedestrian using Non-Negative Matrix Factorization (NMF). We show that NMF is able to capture the wide range of pose and clothing of the pedestrians. We use a modified form of NMF i.e. NMF with sparsity constraints on the factored matrices. We also make use of Riemannian distance metric for similarity measurements in NMF space as the basis vectors generated by NMF aren't orthogonal. We show that for 1% drop in accuracy as compared to the Histogram of Oriented Gradients (HOG) representation we can achieve robustness to partial occlusion.
Resumo:
Many large mammals such as elephant, rhino and tiger often come into conflict with people by destroying agricultural crops and even killing people, thus providing a deterrent to conservation efforts. The males of these polygynous species have a greater variance in reproductive success than females, leading to selection pressures favouring a ‘high risk-high gain’ strategy for promoting reproductive success. This brings them into greater conflict with people. For instance, adult male elephants are far more prone than a member of a female-led family herd to raid agricultural crops and to kill people. In polygynous species, the removal of a certain proportion of ‘surplus’ adult males is not likely to affect the fertility and growth rate of the population. Hence, this could be a management tool which would effectively reduce animal-human conflict, and at the same time maintain the viability of the population. Selective removal of males would result in a skewed sex ratio. This would reduce the ‘effective population size’ (as opposed to the total population or census number), increase the rate of genetic drift and, in small populations, lead to inbreeding depression. Plans for managing destructive mammals through the culling of males will have to ensure that the appropriate minimum size in the populations is being maintained.
Resumo:
The present study was to investigate the effect of W. calendulacea on ischemia and reperfusion-induced cerebral injury. Cerebral ischemia was induced by occluding right and left common carotid arteries (global cerebral ischemia) for 30 min followed by reperfusion for 1 h and 4 h individually. Various biochemical alterations, produced subsequent to the application of bilateral carotid artery occlusion (BCAO) followed by reperfusion viz. increase in lipid peroxidation (LPO), hydrogen peroxide (H(2)O(2)), and decrease in reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD), level in the brain tissue, Western blot analysis (Cu-Zn-SOD and CAT) and assessment of cerebral infarct size were measured. All those enzymes are markedly reversed and restored to near normal level in the groups pre-treated with W. calendulacea (250 and 500 mg/kg given orally in single and double dose/day for 10 days) in dose-dependent way. The effect of W. calendulacea had increased significantly the protein expression of copper/zinc superoxide dismutase (Cu-Zn-SOD) and CAT in cerebral ischemia. W. claendulacea was markedly decrease cerebral infarct damages but results are not statistically significant. It can be concluded that W. calendulacea possesses a neuroprotective activity against cerebral ischemia in rat.
Resumo:
The problem of human detection is challenging, more so, when faced with adverse conditions such as occlusion and background clutter. This paper addresses the problem of human detection by representing an extracted feature of an image using a sparse linear combination of chosen dictionary atoms. The detection along with the scale finding, is done by using the coefficients obtained from sparse representation. This is of particular interest as we address the problem of scale using a scale-embedded dictionary where the conventional methods detect the object by running the detection window at all scales.
Resumo:
In this paper, we describe a method for feature extraction and classification of characters manually isolated from scene or natural images. Characters in a scene image may be affected by low resolution, uneven illumination or occlusion. We propose a novel method to perform binarization on gray scale images by minimizing energy functional. Discrete Cosine Transform and Angular Radial Transform are used to extract the features from characters after normalization for scale and translation. We have evaluated our method on the complete test set of Chars74k dataset for English and Kannada scripts consisting of handwritten and synthesized characters, as well as characters extracted from camera captured images. We utilize only synthesized and handwritten characters from this dataset as training set. Nearest neighbor classification is used in our experiments.
Resumo:
Real-time object tracking is a critical task in many computer vision applications. Achieving rapid and robust tracking while handling changes in object pose and size, varying illumination and partial occlusion, is a challenging task given the limited amount of computational resources. In this paper we propose a real-time object tracker in l(1) framework addressing these issues. In the proposed approach, dictionaries containing templates of overlapping object fragments are created. The candidate fragments are sparsely represented in the dictionary fragment space by solving the l(1) regularized least squares problem. The non zero coefficients indicate the relative motion between the target and candidate fragments along with a fidelity measure. The final object motion is obtained by fusing the reliable motion information. The dictionary is updated based on the object likelihood map. The proposed tracking algorithm is tested on various challenging videos and found to outperform earlier approach.
Resumo:
Visual tracking is an important task in various computer vision applications including visual surveillance, human computer interaction, event detection, video indexing and retrieval. Recent state of the art sparse representation (SR) based trackers show better robustness than many of the other existing trackers. One of the issues with these SR trackers is low execution speed. The particle filter framework is one of the major aspects responsible for slow execution, and is common to most of the existing SR trackers. In this paper,(1) we propose a robust interest point based tracker in l(1) minimization framework that runs at real-time with performance comparable to the state of the art trackers. In the proposed tracker, the target dictionary is obtained from the patches around target interest points. Next, the interest points from the candidate window of the current frame are obtained. The correspondence between target and candidate points is obtained via solving the proposed l(1) minimization problem. In order to prune the noisy matches, a robust matching criterion is proposed, where only the reliable candidate points that mutually match with target and candidate dictionary elements are considered for tracking. The object is localized by measuring the displacement of these interest points. The reliable candidate patches are used for updating the target dictionary. The performance and accuracy of the proposed tracker is benchmarked with several complex video sequences. The tracker is found to be considerably fast as compared to the reported state of the art trackers. The proposed tracker is further evaluated for various local patch sizes, number of interest points and regularization parameters. The performance of the tracker for various challenges including illumination change, occlusion, and background clutter has been quantified with a benchmark dataset containing 50 videos. (C) 2014 Elsevier B.V. All rights reserved.