3 resultados para Observance
em Indian Institute of Science - Bangalore - Índia
Resumo:
Silica nanotubes (SNTs) have been demonstrated here as a versatile host for controlled drug delivery and biosensing. The sol-gel template synthesized SNTs have a slow rate of drug release. Application of an external stimulus in the form of ultrasound to or chemical functionalization of synthesized SNT results in higher yield of drug release as well as yield of drug release varying linearly with time. In case of controlled drug delivery triggered by ultrasound, drug yield as function of time is found to be heavily dependent on the ultrasound impulse protocol. Impulses of shorter duration (similar to 0.5 min) and shorter time intervals between successive impulses resulted in higher drug yields. Confinement of hemoglobin (Hb) inside nanometer sized channels of SNT does not have any detrimental effect on the native protein structure and function. Observance of significant enhancement in direct electron transfer of Hb makes the SNTs also promising for application in biosensors.
Resumo:
Several covalently linked bisporphyrin systems, free-base (H2P---H2P), hybrid bisporphyrins (Zn---H2P) and Zn(II) dimers (ZnP---ZnP) and their 1:1 molecular complexes with sym 1,3,5-trinitrobenzene have been investigated by optical absorption and emission, and magnetic resonance spectroscopic methods. In these systems, two porphyrin units are linked singly through one of the meso aryl groups via ether linkages of variable length. The bisporphyrins cooperatively bind a molecule of a ?-acceptor; 1,3,5-trinitrobenzene (TNB). The binding constant values vary with interchromophore separation. Maximum binding is observed in the bisporphyrin bearing a two-ether covalent linkage. It is found that TNB quenches the fluorescence of the two porphyrine units in a selective manner. It is suggested that a critical distance between the two porphyrin units is necessary for the observance of maximum cooperative intermolecular binding with an acceptor.
Resumo:
The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.