178 resultados para Objective functions

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optimal design of a multiproduct batch chemical plant is formulated as a multiobjective optimization problem, and the resulting constrained mixed-integer nonlinear program (MINLP) is solved by the nondominated sorting genetic algorithm approach (NSGA-II). By putting bounds on the objective function values, the constrained MINLP problem can be solved efficiently by NSGA-II to generate a set of feasible nondominated solutions in the range desired by the decision-maker in a single run of the algorithm. The evolution of the entire set of nondominated solutions helps the decision-maker to make a better choice of the appropriate design from among several alternatives. The large set of solutions also provides a rich source of excellent initial guesses for solution of the same problem by alternative approaches to achieve any specific target for the objective functions

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic algorithms (GAs) are search methods that are being employed in a multitude of applications with extremely large search spaces. Recently, there has been considerable interest among GA researchers in understanding and formalizing the working of GAs. In an earlier paper, we have introduced the notion of binomially distributed populations as the central idea behind an exact ''populationary'' model of the large-population dynamics of the GA operators for objective functions called ''functions of unitation.'' In this paper, we extend this populationary model of GA dynamics to a more general class of objective functions called functions of unitation variables. We generalize the notion of a binomially distributed population to a generalized binomially distributed population (GBDP). We show that the effects of selection, crossover, and mutation can be exactly modelled after decomposing the population into GBDPs. Based on this generalized model, we have implemented a GA simulator for functions of two unitation variables-GASIM 2, and the distributions predicted by GASIM 2 match with those obtained from actual GA runs. The generalized populationary model of GA dynamics not only presents a novel and natural way of interpreting the workings of GAs with large populations, but it also provides for an efficient implementation of the model as a GA simulator. (C) Elsevier Science Inc. 1997.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An efficient strategy for identification of delamination in composite beams and connected structures is presented. A spectral finite-element model consisting of a damaged spectral element is used for model-based prediction of the damaged structural response in the frequency domain. A genetic algorithm (GA) specially tailored for damage identification is derived and is integrated with finite-element code for automation. For best application of the GA, sensitivities of various objective functions with respect to delamination parameters are studied and important conclusions are presented. Model-based simulations of increasing complexity illustrate some of the attractive features of the strategy in terms of accuracy as well as computational cost. This shows the possibility of using such strategies for the development of smart structural health monitoring softwares and systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the last 15 years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parameterizations, namely, the frame element based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, the ability to converge from an unbiased uniform initial guess, and the computation time are analyzed. Some observations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three algorithms for reactive power optimization are proposed in this paper with three different objective functions. The objectives in the proposed algorithm are to minimize the sum of the squares of the voltage deviations of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (:3L2) algorithm, and also the objective of system real power loss (Ploss) minimization. The approach adopted is an iterative scheme with successive power flow analysis using decoupled technique and solution of the linear programming problem using upper bound optimization technique. Results obtained with all these objectives are compared. The analysis of these objective functions are presented to illustrate their advantages. It is observed comparing different objective functions it is possible to identify critical On Load Tap Changers (OLTCs) that should be made manual to avoid possible voltage instability due to their operation based on voltage improvement criteria under heavy load conditions. These algorithms have been tested under simulated conditions on few test systems. The results obtained on practical systems of 24-node equivalent EHV Indian power network, and for a 205 bus EHV system are presented for illustration purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mobile P2P technology provides a scalable approach for content delivery to a large number of users on their mobile devices. In this work, we study the dissemination of a single item of content (e. g., an item of news, a song or a video clip) among a population of mobile nodes. Each node in the population is either a destination (interested in the content) or a potential relay (not yet interested in the content). There is an interest evolution process by which nodes not yet interested in the content (i.e., relays) can become interested (i.e., become destinations) on learning about the popularity of the content (i.e., the number of already interested nodes). In our work, the interest in the content evolves under the linear threshold model. The content is copied between nodes when they make random contact. For this we employ a controlled epidemic spread model. We model the joint evolution of the copying process and the interest evolution process, and derive joint fluid limit ordinary differential equations. We then study the selection of parameters under the content provider's control, for the optimization of various objective functions that aim at maximizing content popularity and efficient content delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In social choice theory, preference aggregation refers to computing an aggregate preference over a set of alternatives given individual preferences of all the agents. In real-world scenarios, it may not be feasible to gather preferences from all the agents. Moreover, determining the aggregate preference is computationally intensive. In this paper, we show that the aggregate preference of the agents in a social network can be computed efficiently and with sufficient accuracy using preferences elicited from a small subset of critical nodes in the network. Our methodology uses a model developed based on real-world data obtained using a survey on human subjects, and exploits network structure and homophily of relationships. Our approach guarantees good performance for aggregation rules that satisfy a property which we call expected weak insensitivity. We demonstrate empirically that many practically relevant aggregation rules satisfy this property. We also show that two natural objective functions in this context satisfy certain properties, which makes our methodology attractive for scalable preference aggregation over large scale social networks. We conclude that our approach is superior to random polling while aggregating preferences related to individualistic metrics, whereas random polling is acceptable in the case of social metrics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiobjective fuzzy methodology is applied to a case study of Khadakwasla complex irrigation project located near Pune city of Maharashtra State, India. Three objectives, namely, maximization of net benefits, crop production and labour employment are considered. Effect of reuse of wastewater on the planning scenario is also studied. Three membership functions, namely, nonlinear, hyperbolic and exponential are analyzed for multiobjective fuzzy optimization. In the present study, objective functions are considered as fuzzy in nature whereas inflows are considered as dependable. It is concluded that exponential and hyperbolic membership functions provided similar cropping pattern for most of the situations whereas nonlinear membership functions provided different cropping pattern. However, in all the three cases, irrigation intensities are more than the existing irrigation intensity.