2 resultados para OXIDASES

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new indole oxygenase from the leaves of Tecoma stans was isolated and purified to homogenity. The purified enzyme system catalyzes the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and 30°C. Two moles of oxygen are consumed and one mole of anthranilic acid is formed for every mole of indole oxidized. Dialysis resulted in complete loss of the activity. The inactive enzyme could be reactivated by the addition of concentrated dialysate. The enzyme is not inhibited by copperspecific chelators, non-heme iron chelators or atebrin. It is not a cuproflavoprotein, unlike the other indole oxygenases and oxidases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new indole oxygenase from the leaves of Tecoma stans was isolated and purified to near homogeneity. The purified enzyme system catalyses the conversion of indole to anthranilic acid. It is optimally active at pH 5.2 and at 30°C. Oxygen (2 mol) is consumed and anthranilic acid (1 mol) is formed for every mole of indole oxidized. Neither sulfhydryl reagents nor sulfhydryl compounds inhibited the enzyme activity. The oxygenase also attacks, apart from indole, 5-hydroxyindole, 5-bromoindole and 5-methylindole. It is not inhibited by copper specific chelators or non-heme iron specific chelators. Atebrin did not inhibit the enzyme activity suggesting that it is not a flavoprotein, unlike other indole oxygenases and indole oxidases. Dialysis resulted in complete loss of enzyme activity. The inactive enzyme could not be reactivated by addition of various cofactors.