200 resultados para ORGAN PRESERVATION SOLUTIONS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.
Resumo:
In the context of removal of organic pollutants from wastewater, sonolysis of CCl4 dissolved in water has been widely investigated. These investigations are either completely experimental or correlate data empirically. In this work, a quantitative model is developed to predict the rate of sonolysis of aqueous CCl4. The model considers the isothermal growth and partially adiabatic collapse of cavitation bubbles containing gas and vapor leading to conditions of high temperatures and pressures in them, attainment of thermodynamic equilibrium at the end of collapse, release of bubble contents into the liquid pool, and reactions in the well-mixed pool. The model successfully predicts the extent of degradation of dissolved CCl4, and the influence of various parameters such as initial concentration of CCl4, temperature, and nature of gas atmosphere above the liquid. in particular, it predicts the results of Hua and Hoffmann (Environ. Sci Technol, 1996, 30, 864-871), who found that degradation is first order with CCl4 and that Argon as well as Ar-O-3 atmospheres give the same results. The framework of the model is capable of quantitatively describing the degradation of many dissolved organics by considering all the involved species.
Resumo:
The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.
Inverse Sensitivity Analysis of Singular Solutions of FRF matrix in Structural System Identification
Resumo:
The problem of structural damage detection based on measured frequency response functions of the structure in its damaged and undamaged states is considered. A novel procedure that is based on inverse sensitivity of the singular solutions of the system FRF matrix is proposed. The treatment of possibly ill-conditioned set of equations via regularization scheme and questions on spatial incompleteness of measurements are considered. The application of the method in dealing with systems with repeated natural frequencies and (or) packets of closely spaced modes is demonstrated. The relationship between the proposed method and the methods based on inverse sensitivity of eigensolutions and frequency response functions is noted. The numerical examples on a 5-degree of freedom system, a one span free-free beam and a spatially periodic multi-span beam demonstrate the efficacy of the proposed method and its superior performance vis-a-vis methods based on inverse eigensensitivity.
Resumo:
Bentonite, commonly used for liner constructions in waste containment systems, possesses many limitations. Illite or illite containing bentonite has been proposed as an alternative material for liner construction. Their properties in different types of pore fluids are important to assess the long-term performance of the liner. Further, the illite-bentonite interaction occurs and changes their properties. The effect of these interactions is known when the pore fluid is only water. How their properties are modified in electrolyte solutions has been brought out in this paper. The index properties have been studied since they give an indication of their engineering properties. Due to reduction in the thickness of the diffused double layer and consequent particle aggregation in bentonite, the effect of clay-clay interaction reduces in electrolyte solutions. In electrolyte solutions, the liquid limit, the plasticity index, and free swell index of bentonite are lower than illite. The plasticity index of bentonite is further reduced in KCI solution. Clays with a higher plasticity index perform better to retain pollutants and reduce permeability. Hence, the presence of both illite and bentonite ensures better performance of the liner in different fluids.
Resumo:
We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on root c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.
Resumo:
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Measurements have been made of the depolarisation factors \sigma u ,\sigma v ,\sigma h, and the intensity of scattering in the horizontal transverse direction, in the case of solutions of four different samples of chlorinated rubber in carbon tetrachloride. The size, shape and molecular weight of the micelles have been deduced by the application of the light scattering theories of Gans, Vrklajan and Katalinic and Debye. The extent to which the degradation of the rubber molecule occurs on chlorination has also been assessed.
Resumo:
Approximate closed-form solutions of the non-linear relative equations of motion of an interceptor pursuing a target under the realistic true proportional navigation (RTPN) guidance law are derived using the Adomian decomposition method in this article. In the literature, no study has been reported on derivation of explicit time-series solutions in closed form of the nonlinear dynamic engagement equations under the RTPN guidance. The Adomian method provides an analytical approximation, requiring no linearization or direct integration of the non-linear terms. The complete derivation of the Adomian polynomials for the analysis of the dynamics of engagement under RTPN guidance is presented for deterministic ideal case, and non-ideal dynamics in the loop that comprises autopilot and actuator dynamics and target manoeuvre, as well as, for a stochastic case. Numerical results illustrate the applicability of the method.
Resumo:
The structure of time dependent jets in rotating fluids using similarity transformations is studied theoretically for which exact solutions are discussed. Approximate solution using a modified yon Mises transformation is also explored.
Resumo:
Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.
Resumo:
Tie-lines between the corundum and spinel solid solutions have been determined experimentally at 1823 K. Next, activities of FeCr2O4 and FeAl2O4 in the spinel solid solution were determined by combining the tie-line data with literature values for the activities of Cr2O3 and Al2O3 in the corundum phase. Activities and the Gibbs energy of mixing for the spinel solid solution were also obtained from a model based on cation distribution between nonequivalent crystallographic sites in the oxide lattice. The difference between the Gibbs energy of mixing obtained experimentally and from the model has been attributed to a strain enthalpy term which is relatively unchanged in magnitude from the reported at 1373 K. The integral enthalpy of mixing obtained from experimental data at 1373 and 1823 K using the second law is compared with the model result.