533 resultados para OPTICAL LATTICE
em Indian Institute of Science - Bangalore - Índia
Resumo:
We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.
Resumo:
We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.
Resumo:
We propose a model to realize a fermionic superfluid state in an optical lattice circumventing the cooling problem. Our proposal exploits the idea of tuning the interaction in a characteristically low-entropy state, a band insulator in an optical bilayer system, to obtain a superfluid. By performing a detailed analysis of the model including fluctuations and augmented by a variational quantum Monte Carlo calculation of the ground state, we show that the superfluid state obtained has a high transition temperature of the order of the hopping energy. Our system is designed to suppress other competing orders such as a charge density wave. We suggest a laboratory realization of this model via an orthogonally shaken optical lattice bilayer.
Resumo:
Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitative prediction for the presence of a nonlinear ``two-photon'' excitation at strong modulation amplitudes.
Resumo:
We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.
Resumo:
Motivated by experiments on Josephson junction arrays, and cold atoms in an optical lattice in a synthetic magnetic field, we study the ``fully frustrated'' Bose-Hubbard model with half a magnetic flux quantum per plaquette. We obtain the phase diagram of this model on a two-leg ladder at integer filling via the density matrix renormalization group approach, complemented by Monte Carlo simulations on an effective classical XY model. The ground state at intermediate correlations is consistently shown to be a chiral Mott insulator (CMI) with a gap to all excitations and staggered loop currents which spontaneously break time-reversal symmetry. We characterize the CMI state as a vortex supersolid or an indirect exciton condensate, and discuss various experimental implications.
Resumo:
Motivated by experiments on Josephson junction arrays in a magnetic field and ultracold interacting atoms in an optical lattice in the presence of a ``synthetic'' orbital magnetic field, we study the ``fully frustrated'' Bose-Hubbard model and quantum XY model with half a flux quantum per lattice plaquette. Using Monte Carlo simulations and the density matrix renormalization group method, we show that these kinetically frustrated boson models admit three phases at integer filling: a weakly interacting chiral superfluid phase with staggered loop currents which spontaneously break time-reversal symmetry, a conventional Mott insulator at strong coupling, and a remarkable ``chiral Mott insulator'' (CMI) with staggered loop currents sandwiched between them at intermediate correlation. We discuss how the CMI state may be viewed as an exciton condensate or a vortex supersolid, study a Jastrow variational wave function which captures its correlations, present results for the boson momentum distribution across the phase diagram, and consider various experimental implications of our phase diagram. Finally, we consider generalizations to a staggered flux Bose-Hubbard model and a two-dimensional (2D) version of the CMI in weakly coupled ladders.
Resumo:
In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes rich physical transformations which involve molecule formation and hopping of molecules on the lattice and thus goes beyond a single-band Hubbard model description. We explore theoretically the response of this system to a harmonic modulation of the magnetic field, and thus of the scattering length, across the Feshbach resonance. In the regime in which the single-band Hubbard model is still valid, we provide results for the doublon production as a function of the various parameters, such as frequency, amplitude, etc., that characterize the field modulation, as well as the lattice depth. The method may uncover a route towards the efficient creation of ultracold molecules and also provide an alternative to conventional lattice-depth-modulation spectroscopy.
Resumo:
The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.
Resumo:
In this paper, we study the Einstein relation for the diffusivity to mobility ratio (DMR) in n-channel inversion layers of non-linear optical materials on the basis of a newly formulated electron dispersion relation by considering their special properties within the frame work of k.p formalism. The results for the n-channel inversion layers of III-V, ternary and quaternary materials form a special case of our generalized analysis. The DMR for n-channel inversion layers of II-VI, IV-VI and stressed materials has been investigated by formulating the respective 2D electron dispersion laws. It has been found, taking n-channel inversion layers of CdGeAs2, Cd(3)AS(2), InAs, InSb, Hg1-xCdxTe, In1-xGaxAsyP1-y lattice matched to InP, CdS, PbTe, PbSnTe, Pb1-xSnxSe and stressed InSb as examples, that the DMR increases with the increasing surface electric field with different numerical values and the nature of the variations are totally band structure dependent. The well-known expression of the DMR for wide gap materials has been obtained as a special case under certain limiting conditions and this compatibility is an indirect test for our generalized formalism. Besides, an experimental method of determining the 2D DMR for n-channel inversion layers having arbitrary dispersion laws has been suggested.
Resumo:
CIoH15NO282, Mr=245"0, orthorhombic, P21212 ~, a = 6.639 (2), b = 8.205 (2), c = 22.528(6)A, V= I227.2(6)A 3, z=4, Dm= 1.315, Dx= 1.326gem -3, MoKa, 2=0.7107A, 12= 3.63 cm -1, F(000) = 520, T= 293 K, R = 0.037 for 1115 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is only 1/10th of the urea standard. The observed low second-order nonlinear response may be attributed to the unfavourable packing of the molecules in the crystal lattice.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The development of high-quality tin monosulphide (SnS) layers is one of the crucial tasks in the fabrication of efficient SnS-based optoelectronic devices. Reduction of strain between film and the substrate by using an appropriate lattice-matched (LM) substrate is a new attempt for the growth of high-quality layers. In this view, the SnS films were deposited on LM Al substrate using the thermal evaporation technique with a low rate of evaporation. The as-grown SnS films were characterized using appropriate techniques and the obtained results are discussed by comparing them with the properties of SnS films grown on amorphous substrate under the same conditions. From structural analysis of the films, it is noticed that the SnS films deposited on amorphous substrate have crystallites that were oriented along different directions. However, the SnS crystallites grown on Al substrate exhibited epitaxial growth along the 101] direction. Photoluminescence (PL) and Raman studies reveal that the films grown on Al substrate have better optical properties than those of the films grown on amorphous substrates. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
C28H48N2Oa.H2 O, Mr=494.7, orthorhombic,P2~2~2~, a = 7.634 (2), b = 11.370 (2), c=34. 167 (4) A, V = 2966 (2) A 3, Z = 4, D m = 1.095,D x -- 1. 108 g cm -3, Mo Kct, 2 -- 0.7107 ,/k, ~ =0.43 cm -~, F(000) = 1088.0, T= 293 K, R = 0.061 for 1578 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is negligible (1/100th of the urea standard). The observed low second-order nonlinear response has been attributed to the unfavourable packing of the molecules in the crystal lattice.