19 resultados para Nozzles

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method has been proposed to optimise the small-signaloptical gain of CO2-N2 gasdynamic lasers (gdl) employing two-dimensional (2D) wedge nozzles. Following our earlier work the equations governing the steady, inviscid, quasi-one-dimensional flow in the wedge nozzle of thegdl are reduced to a universal form so that their solutions depend on a single unifying parameter. These equations are solved numerically to obtain similar solutions for the various flow quantities, which variables are subsequently used to optimize the small-signal-gain. The corresponding optimum values like reservoir pressure and temperature and 2D nozzle area ratio also have been predicted and graphed for a wide range of laser gas compositions, with either H2O or He as the catalyst. A large number of graphs are presented which may be used to obtain the optimum values of small signal gain for a wide range of laser compositions without further computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attention is given to the results of optimization studies with a 16-micron CO2-N2-H2 GDL employing two-dimensional wedge nozzles. The optimum value of the achievable gain reaches 12.7 percent/cm on the P(15) line for a 30:50:20 percent respective apportionment of the aforementioned gases. The corresponding optimum values for reservoir pressure and area ratio are computed as functions of reservoir temperature, and presented graphically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel supersonic nozzles Tip Ring Supersonic Nozzle and Elliptic Sharp Tipped Shallow (ESTS) Lobed Nozzle have been developed to enhance mixing at high speeds which is beneficial to supersonic ejectors. A circular ring protruding at the exit of a conical nozzle forms the tip ring nozzle. The innovative ESTS lobed nozzle comprising of four elliptic lobes with sharp tips that do not protrude deep into the core supersonic flow is produced by a novel yet simple methodology. A comparative experimental study is conducted between a conical nozzle, an ESTS lobed nozzle and a tip ring nozzle with exit Mach number of 2.3. For the first time, the three dimensional flow structure from ESTS lobed nozzle and tip ring nozzle is revealed from laser scattering flow visualization experiments on the free jet. A doubling of jet spreading rate is observed in the ESTS lobed nozzle. When applied to a supersonic ejector, both nozzles achieve a 30% increase in entrainment of secondary flow. The loss of compression ratio is 15% for the ESTS lobed nozzle while it is 50% for the tip ring nozzle. Further, the behavior of wall static pressure profile corroborates mixing enhancement. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An approach, starting with the bubble formation model of Khurana and Khumar, has been presented, which is found to be reasonably applicable to the formation of both bubbles and drops from single submerged nozzles. The model treats both the phenomena jointly as the formation of a dispersed phase entity resulting from injection, whose size depends upon operating parameters and physical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modified set of governing equations for gas-particle flows in nozzles is suggested to include the inertial forces acting on the particle phase. The problem of gas-particle flow through a nozzle is solved using a first order finite difference scheme. A suitable stability condition for the numerical scheme for gas-particle flows is defined. Results obtained from the present set of equations are compared with those of the previous set of equations. It is also found that present set of equations give results which are in good agreement with the experimental observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work is based on four static molds using nozzles of different port diameter, port angle, and immersion depth. It has been observed that the meniscus is wavy. The wave amplitude shows a parabolic variation with the nozzle exit velocity. The dimensionless amplitude is found to vary linearly with the Froude number. Vortex formation and bubble entrainment by the wave occurs at the meniscus beyond a critical flow rate, depending upon the nozzle configuration, immersion depth, and the mold aspect ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comprehensive scheme has been developed for the prediction of radiation from engine exhaust and its incidence on an arbitrarily located sensor. Existing codes have been modified for the simulation of flows inside nozzles and jets. A novel view factor computation scheme has been applied for the determination of the radiosities of the discrete panels of a diffuse and gray nozzle surface. The narrowband model has been used to model the radiation from the gas inside the nozzle and the nonhomogeneous jet. The gas radiation from the nozzle inclusive of nozzle surface radiosities have been used as boundary conditions on the jet radiation. Geometric modeling techniques have been developed to identify and isolate nozzle surface panels and gas columns of the nozzle and jet to determine the radiation signals incident on the sensor. The scheme has been validated for intensity and heat flux predictions, and some useful results of practical importance have been generated to establish its viability for infrared signature analysis of jets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the an earlier CFD analysis of the performance of the gas-dynamically controlled laser cavity [1]it was found that there is possibility of optimizing the geometry of the diffuser that can bring about reductions in both size and cost of the system by examining the critical dimensional requirements of the diffuser. Consequently,an extensive CFD analysis has been carried out for a range of diffuser configurations by simulating the supersonic flow through the arrangement including the laser cavity driven by a bank of converging – diverging nozzles and the diffuser. The numerical investigations with 3D-RANS code are carried out to capture the flow patterns through diffusers past the cavity that has multiple supersonic jet interactions with shocks leading to complex flow pattern. Varying length of the diffuser plates is made to be the basic parameter of the study. The analysis reveals that the pressure recovery pattern during the flow through the diffuser from the simulation, being critical for the performance of the laser device shows its dependence on the diffuser length is weaker beyond a critical lower limit and this evaluation of this limit would provide a design guideline for a more efficient system configuration.The observation based on the parametric study shows that the pressure recovery transients in the near vicinity of the cavity is not affected for the reduction in the length of the diffuser plates up to its 10% of the initial size, indicating the design in the first configuration that was tested experimentally has a large factor of margin. The flow stability in the laser cavity is found to be unaffected since a strong and stable shock is located at the leading edge of the diffuser plates while the downstream shock and flow patterns are changed, as one would expect. Results of the study for the different lengths of diffusers in the range of 10% to its full length are presented, keeping the experimentally tested configuration used in the earlier study [1] as the reference length. The conclusions drawn from the analysis is found to be of significance since it provides new design considerations based on the understanding of the intricacies of the flow, allowing for a hardware optimization that can lead to substantial size reduction of the device with no loss of performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4773065]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full-length and truncated linear plug nozzle flowfields have been analyzed, using both experimental and computational tools, for pressure ratios ranging from 5 to 72, which include the transition of an open base wake to a closed base wake. A good agreement has been found between computational and experimental results on the plug surface. Considering the deficiencies of the computational tools in predicting base flows associated with truncated plug nozzles, an engineering model to predict the wake structure transition in such flows is proposed. The utility of this model in conjunction with empirical tools for the closed-wake base pressure prediction is established. The model is validated against the experimental results available in open literature.