19 resultados para Norma NP ISO 9001:2008
em Indian Institute of Science - Bangalore - Índia
Resumo:
Data-flow analysis is an integral part of any aggressive optimizing compiler. We propose a framework for improving the precision of data-flow analysis in the presence of complex control-flow. W initially perform data-flow analysis to determine those control-flow merges which cause the loss in data-flow analysis precision. The control-flow graph of the program is then restructured such that performing data-flow analysis on the resulting restructured graph gives more precise results. The proposed framework is both simple, involving the familiar notion of product automata, and also general, since it is applicable to any forward data-flow analysis. Apart from proving that our restructuring process is correct, we also show that restructuring is effective in that it necessarily leads to more optimization opportunities. Furthermore, the framework handles the trade-off between the increase in data-flow precision and the code size increase inherent in the restructuring. We show that determining an optimal restructuring is NP-hard, and propose and evaluate a greedy strategy. The framework has been implemented in the Scale research compiler, and instantiated for the specific problem of Constant Propagation. On the SPECINT 2000 benchmark suite we observe an average speedup of 4% in the running times over Wegman-Zadeck conditional constant propagation algorithm and 2% over a purely path profile guided approach.
Resumo:
We study the performance of greedy scheduling in multihop wireless networks where the objective is aggregate utility maximization. Following standard approaches, we consider the dual of the original optimization problem. Optimal scheduling requires selecting independent sets of maximum aggregate price, but this problem is known to be NP-hard. We propose and evaluate a simple greedy heuristic. Analytical bounds on performance are provided and simulations indicate that the greedy heuristic performs well in practice.
Resumo:
Two decision versions of a combinatorial power minimization problem for scheduling in a time-slotted Gaussian multiple-access channel (GMAC) are studied in this paper. If the number of slots per second is a variable, the problem is shown to be NP-complete. If the number of time-slots per second is fixed, an algorithm that terminates in O (Length (I)N+1) steps is provided.
Resumo:
A unit cube in k dimensions (k-cube) is defined as the Cartesian product R-1 x R-2 x ... x R-k where R-i (for 1 <= i <= k) is a closed interval of the form [a(i), a(i) + 1] on the real line. A graph G on n nodes is said to be representable as the intersection of k-cubes (cube representation in k dimensions) if each vertex of C can be mapped to a k-cube such that two vertices are adjacent in G if and only if their corresponding k-cubes have a non-empty intersection. The cubicity of G denoted as cub(G) is the minimum k for which G can be represented as the intersection of k-cubes. An interesting aspect about cubicity is that many problems known to be NP-complete for general graphs have polynomial time deterministic algorithms or have good approximation ratios in graphs of low cubicity. In most of these algorithms, computing a low dimensional cube representation of the given graph is usually the first step. We give an O(bw . n) algorithm to compute the cube representation of a general graph G in bw + 1 dimensions given a bandwidth ordering of the vertices of G, where bw is the bandwidth of G. As a consequence, we get O(Delta) upper bounds on the cubicity of many well-known graph classes such as AT-free graphs, circular-arc graphs and cocomparability graphs which have O(Delta) bandwidth. Thus we have: 1. cub(G) <= 3 Delta - 1, if G is an AT-free graph. 2. cub(G) <= 2 Delta + 1, if G is a circular-arc graph. 3. cub(G) <= 2 Delta, if G is a cocomparability graph. Also for these graph classes, there axe constant factor approximation algorithms for bandwidth computation that generate orderings of vertices with O(Delta) width. We can thus generate the cube representation of such graphs in O(Delta) dimensions in polynomial time.
Resumo:
In this paper, the effect of rhamnolipid biosurfactant on the electrokinetic and rheological behavior of nanozirconia particles is reported. The effect of pH, concentration of biosurfactant, and solids loading on ζ-potential and rheological behavior was investigated. ζ-potential measurements showed that adsorption of biosurfactant shifted the iso-electric point of zirconia with increasing biosurfactant concentration. The surface of zirconia became more electronegative in the presence of biosurfactant indicating a strong interaction. Maximum charge was obtained in the presence of about 230 ppm of biosurfactant. Rheological tests at pH 7 revealed that the zirconia suspension is viscous at high solids loading and addition of biosurfactant decreased the viscosity substantially especially at high solids loading (>50 wt%). Sedimentation tests confirmed that the biosurfactant is a good dispersant for zirconia particles at pH values of 7 and above.
Resumo:
In this paper we consider the problems of computing a minimum co-cycle basis and a minimum weakly fundamental co-cycle basis of a directed graph G. A co-cycle in G corresponds to a vertex partition (S,V ∖ S) and a { − 1,0,1} edge incidence vector is associated with each co-cycle. The vector space over ℚ generated by these vectors is the co-cycle space of G. Alternately, the co-cycle space is the orthogonal complement of the cycle space of G. The minimum co-cycle basis problem asks for a set of co-cycles that span the co-cycle space of G and whose sum of weights is minimum. Weakly fundamental co-cycle bases are a special class of co-cycle bases, these form a natural superclass of strictly fundamental co-cycle bases and it is known that computing a minimum weight strictly fundamental co-cycle basis is NP-hard. We show that the co-cycle basis corresponding to the cuts of a Gomory-Hu tree of the underlying undirected graph of G is a minimum co-cycle basis of G and it is also weakly fundamental.
Resumo:
Enantiospecific synthesis of bio-active butenolide (+)-iso-cladospolide B from D-(-)-tartaric acid in a short synthetic sequence is presented. Pivotal reaction sequence includes cross metathesis of an alkene and Wittig olefination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study uses the European Centre for Medium-Range Weather Forecasts (ECMWF) model-generated high-resolution 10-day-long predictions for the Year of Tropical Convection (YOTC) 2008. Precipitation forecast skills of the model over the tropics are evaluated against the Tropical Rainfall Measuring Mission (TRMM) estimates. It has been shown that the model was able to capture the monthly to seasonal mean features of tropical convection reasonably. Northward propagation of convective bands over the Bay of Bengal was also forecasted realistically up to 5 days in advance, including the onset phase of the monsoon during the first half of June 2008. However, large errors exist in the daily datasets especially for longer lead times over smaller domains. For shorter lead times (less than 4-5 days), forecast errors are much smaller over the oceans than over land. Moreover, the rate of increase of errors with lead time is rapid over the oceans and is confined to the regions where observed precipitation shows large day-to-day variability. It has been shown that this rapid growth of errors over the oceans is related to the spatial pattern of near-surface air temperature. This is probably due to the one-way air-sea interaction in the atmosphere-only model used for forecasting. While the prescribed surface temperature over the oceans remain realistic at shorter lead times, the pattern and hence the gradient of the surface temperature is not altered with change in atmospheric parameters at longer lead times. It has also been shown that the ECMWF model had considerable difficulties in forecasting very low and very heavy intensity of precipitation over South Asia. The model has too few grids with ``zero'' precipitation and heavy (>40 mm day(-1)) precipitation. On the other hand, drizzle-like precipitation is too frequent in the model compared to that in the TRMM datasets. Further analysis shows that a major source of error in the ECMWF precipitation forecasts is the diurnal cycle over the South Asian monsoon region. The peak intensity of precipitation in the model forecasts over land (ocean) appear about 6 (9) h earlier than that in the observations. Moreover, the amplitude of the diurnal cycle is much higher in the model forecasts compared to that in the TRMM estimates. It has been seen that the phase error of the diurnal cycle increases with forecast lead time. The error in monthly mean 3-hourly precipitation forecasts is about 2-4 times of the error in the daily mean datasets. Thus, effort should be given to improve the phase and amplitude forecast of the diurnal cycle of precipitation from the model.
Resumo:
In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions. We use the force and moment transformation matrices separately, and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation is applied to a class of Stewart platform manipulator, and a multi-parameter family of isotropic manipulators is identified analytically. We show that it is impossible to obtain a spatially isotropic configuration within this family. We also compute the isotropic configurations of an existing manipulator and demonstrate a procedure for designing the manipulator for isotropy at a given configuration.
Resumo:
The enantioselective synthesis of the natural products cladospolide B, cladospolide C, and iso-cladospolide B has been accomplished from tartaric acid. Key reactions in the synthetic sequence include the elaboration of a gamma-hydroxy amide derived from tartaric acid via alkene cross metathesis, Yamaguchi lactonization, and ring closing metathesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we consider the problem of selecting, for any given positive integer k, the top-k nodes in a social network, based on a certain measure appropriate for the social network. This problem is relevant in many settings such as analysis of co-authorship networks, diffusion of information, viral marketing, etc. However, in most situations, this problem turns out to be NP-hard. The existing approaches for solving this problem are based on approximation algorithms and assume that the objective function is sub-modular. In this paper, we propose a novel and intuitive algorithm based on the Shapley value, for efficiently computing an approximate solution to this problem. Our proposed algorithm does not use the sub-modularity of the underlying objective function and hence it is a general approach. We demonstrate the efficacy of the algorithm using a co-authorship data set from e-print arXiv (www.arxiv.org), having 8361 authors.