104 resultados para Nonrandom two-liquid model

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model system of two interacting Fermi-liquids, one of which is light and the other much heavier. In the normal state the lighter component provides a quantum mechanical bath coupled 'ohmically' to the heavier component in the sense of Caldeira and Leggett, suppressing thereby the band (tunnelling) matrix elements of the heavier component. Thus we lose the energy of delocalization. On the other hand, a superconducting ordering stiffens the bath spectral function at low energies and so restores the tunnelling. The resulting regain of the delocalization energy bootstraps so as to stabilize the superconducting order that caused it. It is conceivable that the motions parallel to the easy ab-plane and along the hard c-axis may also effectively correspond to the light and the heavy Fermi-liquids, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional model is proposed for taking into account the establishment of contact on the compression side of crack faces in plates under bending. An approximate but simple method is developed for evaluating reduction of stress intensity factor due to such ‘crack closure’. Analysis is first carried out permitting interference of the crack faces. Contact forces are then introduced on the crack faces and their magnitudes determined from the consideration that the interference is just eliminated. The method is based partly on finite element analysis and partly on a continuum analysis using Irwin's solution for point loads on the crack line.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scaled Particle Theory (SPT) has been applied to predict the total free energies of micellization of ionic as well as nonionic micellar systems containing an aryl ring. A modification of the previously developed model has been made, proposing a two-zone model of micellar core which corroborates with the structural information available for such systems. The results are in good agreement with experimental data and also confirm the dictating role of cavity forming free energies for such systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O'Rourke's collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O'Rourke's collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called ``four-leaf clover'' numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90 degrees and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel-air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the first direct-numerical-simulation study of the statistical properties of two-dimensional superfluid turbulence in the simplified, Hall-Vinen-Bekharevich-Khalatnikov two-fluid model. We show that both normalfluid and superfluid energy spectra can exhibit two power-law regimes, the first associated with an inverse cascade of energy and the second with the forward cascade of enstrophy. We quantify the mutual-friction-induced alignment of normal and superfluid velocities by obtaining probability distribution functions of the angle between them and the ratio of their moduli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a two timescale model of learning by economic agents wherein active or 'ontogenetic' learning by individuals takes place on a fast scale and passive or 'phylogenetic' learning by society as a whole on a slow scale, each affecting the evolution of the other. The former is modelled by the Monte Carlo dynamics of physics, while the latter is modelled by the replicator dynamics of evolutionary biology. Various qualitative aspects of the dynamics are studied in some simple cases, both analytically and numerically, and its role as a useful modelling device is emphasized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We design rapidly folding sequences by assigning the strongest couplings to the contacts present in a target native state in a two dimensional model of heteropolymers. The pathways to folding and their dependence on the temperature are illustrated via a mapping of the dynamics into motion within the space of the maximally compact cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of two liquid crystals as solvents in the determination of molecular structure has been demonstrated for systems which do not provide structural information from studies in a single solvent owing to the fact that the spectra are deceptively simple, with the result that all the spectral parameters cannot be derived with reasonable precision. The specific system studied was 2-(p-bromophenyl)-4,6-dichloropyrimidine, for which relative inter-proton discances have been determined from the proton NMR spectra in two nematic solvents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a population made up of individuals capable of sexual as well as asexual modes of reproduction, conditions for the spread of a transposable element are explored using a one-locus, two-haplotype model. The analysis is then extended to include the possibility that the transposable element can modulate the probability of sexual reproduction, thus casting Hickey’s (1982,Genetics 101: 519–531) suggestion in a population genetics framework. The model explicitly includes the cost of sexual reproduction, fitness disadvantage to the transposable element, probability of transposition, and the predisposition for sexual reproduction in the presence and absence of the transposable element. The model predicts several kinds of outcome, including initial frequency dependence and stable polymorphism. More importantly, it is seen that for a wide range of parameter values, the transposable element can go to fixation. Therefore it is able to convert the population from a predominantly asexual to a predominantly sexual mode of reproduction. Viewed in conjunction with recent results implicating short stretches of apparently non-coding DNA in sex determination (McCoubreyet al. 1988,Science 242: 1146–1151), the model hints at the important role this mechanism could have played in the evolution of sexuality.