490 resultados para Nonlinear optimization solver

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A lower-bound limit analysis formulation, by using two-dimensional finite elements, the three-dimensional Mohr-Coulomb yield criterion, and nonlinear optimization, has been given to deal with an axisymmetric geomechanics stability problem. The optimization was performed using an interior point method based on the logarithmic barrier function. The yield surface was smoothened (1) by removing the tip singularity at the apex of the pyramid in the meridian plane and (2) by eliminating the stress discontinuities at the corners of the yield hexagon in the pi-plane. The circumferential stress (sigma(theta)) need not be assumed. With the proposed methodology, for a circular footing, the bearing-capacity factors N-c, N-q, and N-gamma for different values of phi have been computed. For phi = 0, the variation of N-c with changes in the factor m, which accounts for a linear increase of cohesion with depth, has been evaluated. Failure patterns for a few cases have also been drawn. The results from the formulation provide a good match with the solutions available from the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overall performance of random early detection (RED) routers in the Internet is determined by the settings of their associated parameters. The non-availability of a functional relationship between the RED performance and its parameters makes it difficult to implement optimization techniques directly in order to optimize the RED parameters. In this paper, we formulate a generic optimization framework using a stochastically bounded delay metric to dynamically adapt the RED parameters. The constrained optimization problem thus formulated is solved using traditional nonlinear programming techniques. Here, we implement the barrier and penalty function approaches, respectively. We adopt a second-order nonlinear optimization framework and propose a novel four-timescale stochastic approximation algorithm to estimate the gradient and Hessian of the barrier and penalty objectives and update the RED parameters. A convergence analysis of the proposed algorithm is briefly sketched. We perform simulations to evaluate the performance of our algorithm with both barrier and penalty objectives and compare these with RED and a variant of it in the literature. We observe an improvement in performance using our proposed algorithm over RED, and the above variant of it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal fractional levels, for the base flow conditions, considering the goals of the Pollution Control Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM) developed subsequently is a stochastic model and considers the moments (mean, variance and skewness) of water quality indicators, incorporating uncertainty due to randomness of input variables along with uncertainty due to imprecision. The risk of low water quality is reduced significantly by using this modified model, but inclusion of new constraints leads to a low value of acceptability level, A, interpreted as the maximized minimum satisfaction in the system. To improve this value, a new model, which is a combination Of FWLAM and MFWLAM, is presented, allowing for some violations in the constraints of MFWLAM. This combined model is a multiobjective optimization model having the objectives, maximization of acceptability level and minimization of violation of constraints. Fuzzy multiobjective programming, goal programming and fuzzy goal programming are used to find the solutions. For the optimization model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool. The methodology is applied to a case study of the Tunga-Bhadra river system in south India. The model results in a compromised solution of a higher value of acceptability level as compared to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with a comparatively better value of acceptability level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By applying the lower bound theorem of limit analysis in conjunction with finite elements and nonlinear optimization, the bearing capacity factor N has been computed for a rough strip footing by incorporating pseudostatic horizontal seismic body forces. As compared with different existing approaches, the present analysis is more rigorous, because it does not require an assumption of either the failure mechanism or the variation of the ratio of the shear to the normal stress along the footing-soil interface. The magnitude of N decreases considerably with an increase in the horizontal seismic acceleration coefficient (kh). With an increase in kh, a continuous spread in the extent of the plastic zone toward the direction of the horizontal seismic body force is noted. The results obtained from this paper have been found to compare well with the solutions reported in the literature. (C) 2013 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of pipe diameter (D) on the vertical uplift resistance of a long horizontal pipeline embedded in sand has been investigated. The analysis has been performed by using the lower bound finite-element limit analysis in combination with nonlinear optimization. Three well-defined phi versus sigma(m) curves reported from literature for different sands have been used. It is observed that for a given embedment ratio, with an increase in pipe diameter, the magnitude of the uplift factor (F-gamma) reduces quite significantly, which indicates the importance of considering scale effects while designing buried pipe lines. The scale effects have been found to become even more substantial with an increase in the embedment ratio. The analysis compares well with various theoretical results reported from literature. On the other hand, as compared to available centrifuge test results, the present analysis has been found to provide quite a higher magnitude of the uplift resistance when the theoretical prediction is based on peak soil friction angle. However, if the theoretical analysis is performed by using the friction angle that accounts for the progressive shear failure, the difference between the theoretical and centrifuge test results decreases quite significantly.(C) 2013 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vertical uplift resistance of long pipes buried in sands and subjected to pseudostatic seismic forces has been computed by using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The soil mass is assumed to follow the Mohr-Coulomb failure criterion and an associated flow rule. The failure load is expressed in the form of a nondimensional uplift factor F-gamma. The variation of F-gamma is plotted as a function of the embedment ratio of the pipe, horizontal seismic acceleration coefficient (k(h)), and soil friction angle (phi). The magnitude of F-gamma is found to decrease continuously with an increase in the horizontal seismic acceleration coefficient. The reduction in the uplift resistance becomes quite significant, especially for greater values of embedment ratios and lower values of friction angle. The predicted uplift resistance was found to compare well with the existing results reported from the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The uplift resistance of pipelines buried in sands, in the presence of inclined groundwater flow, considering both upward and downward flow directions, has been determined by using the lower bound finite elements limit analysis in conjunction with nonlinear optimization. A correction factor (f (gamma) ), which needs to be multiplied with the uplift factor (F (gamma) ), has been computed to account for groundwater seepage. The variation of f (gamma) has been obtained as a function of i(gamma (w) /gamma (sub) ) for different horizontal inclinations (theta) of groundwater flow; where i = absolute magnitude of hydraulic gradient along the direction of flow, gamma (w) is the unit weight of water and gamma (sub) is the submerged unit weight of soil mass. For a given magnitude of i, there exists a certain critical value of theta for which the magnitude of f (gamma) becomes the minimum. An example has also been presented to illustrate the application of the results obtained for designing pipelines in presence of groundwater seepage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using the lower-bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization, bearing-capacity factors, N-c and N-gamma q, with an inclusion of pseudostatic horizontal seismic body forces, have been determined for a shallow embedded horizontal strip footing placed on sloping ground surface. The variation of N-c and N-gamma q with changes in slope angle (beta) for different values of seismic acceleration coefficient (k(h)) has been obtained. The analysis reveals that irrespective of ground inclination and the embedment depth of the footing, the factors N-c and N-gamma q decrease quite considerably with an increase in k(h). As compared with N-c, the factor N-gamma q is affected more extensively with changes in k(h) and beta. Unlike most of the results reported in literature for the seismic case, the present computational results take into account the shear resistance of soil mass above the footing level. An increase in the depth of the embedment leads to an increase in the magnitudes of both N-c and N-gamma q. (C) 2014 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ultimate bearing capacity of a circular footing, placed over rock mass, is evaluated by using the lower bound theorem of the limit analysis in conjunction with finite elements and nonlinear optimization. The generalized Hoek-Brown (HB) failure criterion, but by keeping a constant value of the exponent, alpha = 0.5, was used. The failure criterion was smoothened both in the meridian and pi planes. The nonlinear optimization was carried out by employing an interior point method based on the logarithmic barrier function. The results for the obtained bearing capacity were presented in a non-dimensional form for different values of GSI, m(i), sigma(ci)/(gamma b) and q/sigma(ci). Failure patterns were also examined for a few cases. For validating the results, computations were also performed for a strip footing as well. The results obtained from the analysis compare well with the data reported in literature. Since the equilibrium conditions are precisely satisfied only at the centroids of the elements, not everywhere in the domain, the obtained lower bound solution will be approximate not true. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a lower bound limit analysis approach for solving an axisymmetric stability problem by using the Drucker-Prager (D-P) yield cone in conjunction with finite elements and nonlinear optimization. In principal stress space, the tip of the yield cone has been smoothened by applying the hyperbolic approximation. The nonlinear optimization has been performed by employing an interior point method based on the logarithmic barrier function. A new proposal has also been given to simulate the D-P yield cone with the Mohr-Coulomb hexagonal yield pyramid. For the sake of illustration, bearing capacity factors N-c, N-q and N-gamma have been computed, as a function of phi, both for smooth and rough circular foundations. The results obtained from the analysis compare quite well with the solutions reported from literature.