309 resultados para Nonlinear Programming
em Indian Institute of Science - Bangalore - Índia
Resumo:
The problem of controlling the vibration pattern of a driven string is considered. The basic question dealt with here is to find the control forces which reduce the energy of vibration of a driven string over a prescribed portion of its length while maintaining the energy outside that length above a desired value. The criterion of keeping the response outside the region of energy reduction as close to the original response as possible is introduced as an additional constraint. The slack unconstrained minimization technique (SLUMT) has been successfully applied to solve the above problem. The effect of varying the phase of the control forces (which results in a six-variable control problem) is then studied. The nonlinear programming techniques which have been effectively used to handle problems involving many variables and constraints therefore offer a powerful tool for the solution of vibration control problems.
Resumo:
This paper is concerned with the reliability optimization of a spatially redundant system, subject to various constraints, by using nonlinear programming. The constrained optimization problem is converted into a sequence of unconstrained optimization problems by using a penalty function. The new problem is then solved by the conjugate gradient method. The advantages of this method are highlighted.
Resumo:
The overall performance of random early detection (RED) routers in the Internet is determined by the settings of their associated parameters. The non-availability of a functional relationship between the RED performance and its parameters makes it difficult to implement optimization techniques directly in order to optimize the RED parameters. In this paper, we formulate a generic optimization framework using a stochastically bounded delay metric to dynamically adapt the RED parameters. The constrained optimization problem thus formulated is solved using traditional nonlinear programming techniques. Here, we implement the barrier and penalty function approaches, respectively. We adopt a second-order nonlinear optimization framework and propose a novel four-timescale stochastic approximation algorithm to estimate the gradient and Hessian of the barrier and penalty objectives and update the RED parameters. A convergence analysis of the proposed algorithm is briefly sketched. We perform simulations to evaluate the performance of our algorithm with both barrier and penalty objectives and compare these with RED and a variant of it in the literature. We observe an improvement in performance using our proposed algorithm over RED, and the above variant of it.
Resumo:
This paper is devoted to the improvement of the measuring range of inverted V-notch (IVN) weir, a practical linear sharp-crested weir, designed earlier by the writers. The range of linearity of IVN can be considerably enhanced (by more than 200%) by the addition of a retangular weir of width 0.265W (W = half crest width) at a depth of 0.735d (d = altitude of IVN), above the crest of the weir, which is equivalent to providing at this depth two vertical straight lines to the IVN, resulting in a chimney-shaped profile; hence, the modified weir is named chimney weir. The design parameters of the weir, that is, the linearity range, base flow depth, and datum constant, which fixes the reference plane of the weir, are estimated by solving the nonlinear programming problem using a numerical optimization procedure. For flows through this weir above a depth of 0.22d, the discharges are proportional to the depth of flow measured above a reference plane situated at 0.08d above the weir crest for all heads in the range 0.22d <= h <= 2.43d, within a maximum percentage deviation of ±1.5 from the theoretical discharge. A significant result of the analysis is that the same linear head-discharge relationship governing the flow through the IVN is also valid for the extended chimney weir. Experiments with three different chimney weirs show excellent agreement with the theory by giving a constant average coefficient of discharge for each weir.
Resumo:
A nonlinear suboptimal guidance scheme is developed for the reentry phase of the reusable launch vehicles. A recently developed methodology, named as model predictive static programming (MPSP), is implemented which combines the philosophies of nonlinear model predictive control theory and approximate dynamic programming. This technique provides a finite time nonlinear suboptimal guidance law which leads to a rapid solution of the guidance history update. It does not have to suffer from computational difficulties and can be implemented online. The system dynamics is propagated through the flight corridor to the end of the reentry phase considering energy as independent variable and angle of attack as the active control variable. All the terminal constraints are satisfied. Among the path constraints, the normal load is found to be very constrictive. Hence, an extra effort has been made to keep the normal load within a specified limit and monitoring its sensitivity to the perturbation.
Resumo:
The recently developed reference-command tracking version of model predictive static programming (MPSP) is successfully applied to a single-stage closed grinding mill circuit. MPSP is an innovative optimal control technique that combines the philosophies of model predictive control (MPC) and approximate dynamic programming. The performance of the proposed MPSP control technique, which can be viewed as a `new paradigm' under the nonlinear MPC philosophy, is compared to the performance of a standard nonlinear MPC technique applied to the same plant for the same conditions. Results show that the MPSP control technique is more than capable of tracking the desired set-point in the presence of model-plant mismatch, disturbances and measurement noise. The performance of MPSP and nonlinear MPC compare very well, with definite advantages offered by MPSP. The computational speed of MPSP is increased through a sequence of innovations such as the conversion of the dynamic optimization problem to a low-dimensional static optimization problem, the recursive computation of sensitivity matrices and using a closed form expression to update the control. To alleviate the burden on the optimization procedure in standard MPC, the control horizon is normally restricted. However, in the MPSP technique the control horizon is extended to the prediction horizon with a minor increase in the computational time. Furthermore, the MPSP technique generally takes only a couple of iterations to converge, even when input constraints are applied. Therefore, MPSP can be regarded as a potential candidate for online applications of the nonlinear MPC philosophy to real-world industrial process plants. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Nonlinear Suboptimal Guidance with Impact Angle Constraint for Slow Moving Targets in 1-D Using MPSP
Resumo:
Using a recently developed method named as model predictive static programming (MPSP), a nonlinear suboptimal guidance law for a constant speed missile against a slow moving target with impact angle constraint is proposed. In this paper MPSP technique leads to a closed form solution of the latax history update for the given problem. Guidance command is the latax,which is normal to the missile velocity and the terminal constraints are miss distance and impact angle. The new guidance law is validated by considering the nonlinear kinematics with both lag-free and first order autopilot delay.
Resumo:
A nonlinear suboptimal guidance law is presented in this paper for successful interception of ground targets by air-launched missiles and guided munitions. The main feature of this guidance law is that it accurately satisfies terminal impact angle constraints in both azimuth as well as elevation simultaneously. In addition, it is capable of hitting the target with high accuracy as well as minimizing the lateral acceleration demand. The guidance law is synthesized using recently developed model predictive static programming (MPSP). Performance of the proposed MPSP guidance is demonstrated using three-dimensional (3-D) nonlinear engagement dynamics by considering stationary, moving, and maneuvering targets. Effectiveness of the proposed guidance has also been verified by considering first. order autopilot lag as well as assuming inaccurate information about target maneuvers. Multiple munitions engagement results are presented as well. Moreover, comparison studies with respect to an augmented proportional navigation guidance (which does not impose impact angle constraints) as well as an explicit linear optimal guidance (which imposes the same impact angle constraints in 3-D) lead to the conclusion that the proposed MPSP guidance is superior to both. A large number of randomized simulation studies show that it also has a larger capture region.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.