66 resultados para Nonlattice self-similar fractal strings

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion- induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-similar solution of the unsteady laminar compressible boundary-layer flow with variable properties at a three-dimensional stagnation point with mass transfer has been obtained when the free-stream velocity varies inversely as a linear function of time. The resulting ordinary differential equations have been solved numerically using an implicit finite-difference scheme. The results are found to be strongly dependent on the parameter characterizing the unsteadiness in the free-stream velocity. The velocity profiles show some features not encountered in steady flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-similar solution of the unsteady laminar incompressible two-dimensional and axisymmetric stagnation point boundary layers for micropolar fluids governing the flow and heat transfer problem has been obtained when the free stream velocity and the square of the mass transfer vary inversely as a linear function of time. The nonlinear ordinary differential equations governing the flow have been solved numerically using a quasilinear finite-Difference scheme. The results indicate that the coupling parameter, mass transfer and unsteadiness in the free stream velocity strongly affect the skin friction, microrotation gradient and heat transfer whereas the effect of microrotation parameter is strong only on the microrotation gradient. The heat transfer is strongly dependent on the prandtl number whereas the skin friction gradient are unaffected by it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of exact, self-similar, time-dependent solutions describing free surface flows under gravity is found which extends the self-propagating class of solutions discovered earlier by Freeman (1972) to those which decay with time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we have investigated the instability of the self-similar flow behind the boundary of a collapsing cavity. The similarity solutions for the flow into a cavity in a fluid obeying a gas law p = Kργ, K = constant and 7 ≥ γ > 1 has been solved by Hunter, who finds that for the same value of γ there are two self-similar flows, one with accelerating cavity boundary and other with constant velocity cavity boundary. We find here that the first of these two flows is unstable. We arrive at this result only by studying the propagation of disturbances in the neighbourhood of the singular point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drop breakup inviscous liquids in agitated vessels occurs in elongational flow around impeller blade edges. The drop size distributions measured over extended periods for impellers of different sizes show that breakup process continues up to 15-20 h, before a steady state is reached. The size distributions evolve in a self-similar way till the steady state is reached. The scaled size distributions vary with impeller size and impeller speed, in contrast with the near universal scaling known for drop breakup in turbulent flows. The steady state size of the largest drop follows inverse scaling with impeller tip velocity. The breadth of the scaled size distributions also shows a monotonic relationship with impeller tip velocity only. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the magnetic field on the unsteady flow over a stretching surface in a rotating fluid has been studied. The unsteadiness in the flow field is due to the time-dependent variation of the velocity of the stretching surface and the angular velocity of the rotating fluid. The Navier-Stokes equations and the energy equation governing the flow and the heat transfer admit a self-similar solution if the velocity of the stretching surface and the angular velocity of the rotating fluid vary inversely as a linear function of time. The resulting system of ordinary differential equations is solved numerically using a shooting method. The rotation parameter causes flow reversal in the component of the velocity parallel to the strerching surface and the magnetic field tends to prevent or delay the flow reversal. The surface shear stresses dong the stretching surface and in the rotating direction increase with the rotation parameter, but the surface heat transfer decreases. On the other hand, the magnetic field increases the surface shear stress along the stretching surface, but reduces the surface shear stress in the rotating direction and the surface heat transfer. The effect of the unsteady parameter is more pronounced on the velocity profiles in the rotating direction and temperature profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetofluid dynamic steady incompressible laminar boundary layer flow for a point sink with an applied magnetic field and mass transfer has been studied. The two-point boundary-value problem governed by self-similar equations has been solved numerically. It is observed that the magnetic field increases the skin friction, but reduces the heat transfer and mass flux diffusion. However, the skin friction, heat transfer and mass flux diffusion increase due to suction and the effect of injection is just opposite. Prandtl and Schmidt numbers affect the temperature and concentration, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudotwo-dimensional wakes are generated by introducing spanwise cellular structures into an otherwise plane turbulent wake by means of the castellated blunt trailing edges of different configurations. The transverse growths of these coflowing cellular wakes are found to be independent of each other without any noticeable spanwise interaction. This wake growth is examined in the light of the plane equilibrium wake analysis. Though these wakes are not found to be exactly self-similar, their growth shows a nonmonotonous approach toward the asymptotic state appropriate to that of a plane wake. The dye emission in the wakes illustrated a coherent vortical structure in the transverse plane, similar to that of the usual two-dimensional wake, in spite of the initial spanwise irregularities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of injection and suction on the generalised vortex flow of a steady laminar incompressible fluid over a stationary infinite disc with or without magnetic field under boundary-layer approximations has been studied. The coupled nonlinear ordinary differential equations governing the self-similar flow have been numerically solved using the finite-difference scheme. The results indicate that the injection produces a deeper inflow layer and de-stabilises the motion while suction or magnetic field suppresses the inflow layer and produces stability. The effect of decreasingn, the parameter characterising the nature of vortex flow, is similar to that of increasing the injection rate.