53 resultados para Nonbridging oxygens
em Indian Institute of Science - Bangalore - Índia
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.
Resumo:
Complexes of lanthanide perchlorates with the ligand N,N,N,N-tetra-methyl-3,6,9-trioxaundecane diamide (TUD) of the composition Ln(TUD)2-(ClO4)3 (Ln triple bond; length as m-dash La, Nd, Ho, Er, Y) were isolated. Electrical conductivity values indicate that all the perchlorate groups are ionic. IR and nuclear magnetic resonance (1H and 13C) data prove that the ligand coordinates to the metal via the three ether oxygens and the two carbonyl oxygens. A probable coordination number of ten can be assigned for all the complexes.
Resumo:
The monohydrate of the protected amino-terminal pentapeptide of suzukacillin, t-butoxycarbonyl--aminoisobutyryl-L-prolyl-L-valyl--aminoisobutyryl-L-valine methyl ester, C29H51N5O8, crystallizes in the orthorhombic space group P212121 with a= 10.192, b= 10.440, c= 32.959 Å, and Z= 4. The structure has been solved by direct methods and refined to an R value of 0.101 for 1 827 observed reflections. The molecule exists as a four-fold helix with a pitch of 5.58 Å. The helix is stabilised by N–H O hydrogen bonds, two of the 51 type (corresponding to the -helix) and the third of the 41 type (310 helix). The carbonyl oxygen of the amino-protecting group accepts two hydrogen bonds, one each from the amide NH groups of the third (41) and fourth (51) residues. The remaining 51 hydrogen bond is between the two terminal residues. The lone water molecule in the structure is hydrogen bonded to carbonyl oxygens of the prolyl residue in one molecule and the non-terminal valyl residue in a symmetry-related molecule.
Resumo:
Single crystal [(111) and (100) planes], and powder ESR of Mn2+ (substituting for Ca2+) in Ca2Ba(C2H5COO)6 in the temperature range 220°C to -160°C shows (i) a doubling of both the physically and chemically inequivalent sites, and a change in the magnitude (150 G at -6°C to 170 G at -8°C) as well as the orientation of the D tensor across the -6°C transition and (ii) an inflection point in the D vs T plot across the -75°C transition. The oxygen octahedra around the Ca2+ sites are inferred to undergo alternate rotations, showing the participation of the carboxyl oxygens in the -6°C transition. A relation of the type D=D0(1+αT+βT2) seems to fit the D variation satisfactorily.
Resumo:
The calcium binding characteristics of antibiotic X-537A (lasalocid-A) in a lipophilic solvent, acetonitrile (CH3CN), have been studied using circular dichroism (CD) spectroscopy. The analysis of the data indicated that in this medium polar solvent, X-537A forms predominantly the charged complexes of stoichiometries 2:1 and 1:1, the relative amounts of the two being dependent on [Ca2+]. The conformation of the complexes, arrived at on the basis of the data, seem to indicate a rigid part encompassing Ca2+, liganded to 3 oxygens of the molecule, viz., the carbonyl, the substituted tetrahydrofuran ring and the substituted pyran ring oxygens (apart from possibly, the liganding provided by nitrogen atoms of the solvent molecules), and a flexible part consisting of the salicylic acid group of the molecule.
Resumo:
While Mo in the Co-Mo/y-A1203 hydrodesulfurization catalyst is present as a sulfidic species similar to MoS2, Co shows two types of coordination, one with six sulfurs (but not a bulk sulfide) and the other with four oxygens. The significance of such species is discussed. In addition to an additive relation of the EXAFS function and the residual spectra, the ratio of amplitude terms of the catalyst and the model system has been employed in the analysis.
Resumo:
A ternary metal-nucleotide complex, Na2[Cu(5’-IMP)2(im)o,8(H20)l,2(H20)2h]as~ 1be2e.n4 pHr2ep0a,r ed and its structure analyzed by X-ray diffraction (5’-IMP = inosine 5’-monophos hate; im = imidazole). The complex crystallizes in space group C222, with a = 8.733 (4) A, b = 23.213 (5) A, c = 21.489 (6) 1, and Z = 4. The structure was solved by the heavy-atom method and refined by full-matrix least-squares technique on the basis of 2008 observed reflections to a final R value of 0.087. Symmetry-related 5’-IMP anions coordinate in cis geometry through the N(7) atoms of the bases. The other cis positions of the coordination plane are statistically occupied by nitrogen atoms of disordered im groups and water oxygens with occupancies 0.4 and 0.6, respectively. Water oxygens in axial positions complete the octahedral coordination of Cu(I1). The complex is isostructural with C~S-[P~(S’-IMP),(NH~)~a] m”,o del proposed for Pt(I1) binding to DNA. The base binding observed in the present case is different from the typical ”phosphate only” binding shown from earlier studies on metal-nucleotide complexes containing various other ?r-aromatic amines.
Resumo:
The interaction of the ionophore antibiotic lasalocid-A with lithium perchlorate in acetonitrile has been studied by circular dichroism (c.d.) and 1H, 13C and 7Li nuclear magnetic resonance (n.m.r.) techniques. Analysis of the c.d. data has shown that both the 2:1 sandwich (ionophore-cation-ionosphore) complex and 1:1 complex coexist in solution. The n.m.r. data are consistent with a conformational model in which the carbonyl oxygen, he tetrahydrofuran and the tetrahydropyran ring oxygen atoms, two hydroxyl group oxygens and either a water or a solvent molecule coordinate to the lithium ion.
Resumo:
The crystal structure of the cobalt( 11) complex with 2'-deoxyinosine 5'-monophosphate (5'- dlMP), [Co(5'-dlMP) (H,0),]-2H20, has been analysed by X-ray diffraction. The complex crystallizes in the space group P2,2,2, with a = 6.877(3), b = 10.904(2), c = 25.421 (6) A, and Z = 4. The structure was solved by the heavy-atom method and refined to an R value of 0.043 using 1 776 unique reflections. The cobalt ion binds only to the 6-oxopurine base of the nucleotide at the N(7) position, the octahedral co-ordination of the metal being completed by five water oxygens. The phosphate oxygens are involved in hydrogen bonding with the co-ordinated water molecules. The structure is closely similar to that of the corresponding ribonucleotide complex. The nucleotide has the energetically preferred conformation: an anti base, a C(3') -endo sugar pucker, and a gauche-gauche conformation about the C(4')-C( 5') bond. The significance of sugar puckering in the monomeric complexes of general formula [ M (5'-nucleotide) (H20),] is explained in terms of the structural requirements for metal-water-phosphate bridging interactions.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6 (DSP), Ca2Pb(C2H5COO)6 (DLP) and Ca2Ba(C2H5COO)6 (DBP), in single crystals and powders, over the temperature range from 200°C to -180°C have been carried out to study the successive phase transitions in these compounds. (DSP: [Tetragonal] ← 8.5°C → [tetragonal, ferroelectric] [tetragonal] ← -169°C → [monoclinic, ferroelectric]; DLP : [tetragonal] ← 60°C → [tetragonal, ferroelectric] ← -71.5°C → [monoclinic, ferroelectric]; [Cubic] ← -6°C → [orthorhombic] ← -75°C → [?]). Spectra have been analysed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. In DSP and DLP across the I ↔ II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurence of ferroelectricity. The II ↔ III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. In DBP, the -6°C transition leads to (i) a doubling of both physically and chemically inequivalent sites (ii) a small (150 G at -6°C to 170 G at -8°C), but abrupt change in the magnitude of the zero-field splitting tensor D, and (iii) displacements of the orientations of the D tensors. Results are interpreted in terms of alternate rotations of the oxygen octahedra, showing participation of the carboxyl oxygens in the transition. No drastic changes in the parameters occur across the -75°C transition consistent with its second order nature. Similarities and dissimilarities of the ESR spectra of the three compounds in relation to the phase transitions, are discussed.
Resumo:
The interactions of benzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-24-crown-8 with 2,3-dichloro-5,6-dicyano- 1,4-benzoquinone have been studied in methylene chloride by using spectroscopic methods. These crown ethers from 1:l molecular complexes with the acceptor. The magnitudes of association constants and thermodynamic parameters of complexation are indicative of cooperative interaction of oxygens with the acceptor.