50 resultados para Non-autonomous semilinear parabolic problems

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider some non-autonomous second order Cauchy problems of the form u + B(t)(u) over dot + A(t)u = f (t is an element of [0, T]), u(0) = (u) over dot(0) = 0. We assume that the first order problem (u) over dot + B(t)u = f (t is an element of [0, T]), u(0) = 0, has L-p-maximal regularity. Then we establish L-p-maximal regularity of the second order problem in situations when the domains of B(t(1)) and A(t(2)) always coincide, or when A(t) = kappa B(t).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the trishanku (triA(-)) mutant of the social amoeba Dictyostelium discoideum, aggregates are smaller than usual and the spore mass is located mid-way up the stalk, not at the apex. We have monitored aggregate territory size, spore allocation and fruiting body morphology in chimaeric groups of (quasi-wild-type) Ax2 and triA(-) cells. Developmental canalisation breaks down in chimaeras and leads to an increase in phenotypic variation. A minority of triA(-) cells causes largely Ax2 aggregation streams to break up; the effect is not due to the counting factor. Most chimaeric fruiting bodies resemble those of Ax2 or triA(-). Others are double-deckers with a single stalk and two spore masses, one each at the terminus and midway along the stalk. The relative number of spores belonging to the two genotypes depends both on the mixing ratio and on the fruiting body morphology. In double-deckers formed from 1:1 chimaeras, the upper spore mass has more Ax2 spores, and the lower spore mass more triA(-) spores, than expected. Thus, the traits under study depend partly on the cells' own genotype and partly on the phenotypes, and so genotypes, of other cells: they are both autonomous and non-autonomous. These findings strengthen the parallels between multicellular development and behaviour in social groups. Besides that, they reinforce the point that a trait can be associated with a genotype only in a specified context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite difference method for a time-dependent singularly perturbed convection-diffusion-reaction problem involving two small parameters in one space dimension is considered. We use the classical implicit Euler method for time discretization and upwind scheme on the Shishkin-Bakhvalov mesh for spatial discretization. The method is analysed for convergence and is shown to be uniform with respect to both the perturbation parameters. The use of the Shishkin-Bakhvalov mesh gives first-order convergence unlike the Shishkin mesh where convergence is deteriorated due to the presence of a logarithmic factor. Numerical results are presented to validate the theoretical estimates obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scope of the differential transformation technique, developed earlier for the study of non-linear, time invariant systems, has been extended to the domain of time-varying systems by modifications to the differential transformation laws proposed therein. Equivalence of a class of second-order, non-linear, non-autonomous systems with a linear autonomous model of second order is established through these transformation laws. The feasibility of application of this technique in obtaining the response of such non-linear time-varying systems is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady free convection boundary-layer flow in the forward stagnation-point region of a sphere, which is rotating with time-dependent angular velocity in an ambient fluid, has been studied. Both constant wall temperature and constant hear flux conditions have been considered. The non-linear coupled parabolic partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The skin friction and the heat transfer are enhanced by the buoyancy force. The effect of the buoyancy force is found to be more pronounced for smaller Prandtl numbers than for larger Prandtl numbers. For a given buoyancy force, the heat transfer increases with an increase in Prandtl number, but the skin friction decreases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unsteady mixed convection flow of an incompressible laminar electrically conducting fluid over an impulsively stretched permeable vertical surface in an unbounded quiescent fluid in the presence of a transverse magnetic field has been investigated. At the same time, the surface temperature is suddenly increased from the surrounding fluid temperature or a constant heat flux is suddenly imposed on the surface. The problem is formulated in such a way that for small time it is governed by Rayleigh type of equation and for large time by Crane type of equation. The non-linear coupled parabolic partial differential equations governing the unsteady mixed convection flow under boundary layer approximations have been solved analytically by using the homotopy analysis method as well as numerically by an implicit finite difference scheme. The local skin friction coefficient and the local Nusselt number are found to decrease rapidly with time in a small time interval and they tend to steady-state values for t* >= 5. They also increase with the buoyancy force and suction, but decrease with injection rate. The local skin friction coefficient increases with the magnetic field, but the local Nusselt number decreases. There is a smooth transition from the unsteady state to the steady state. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Static and vibration problems of an indeterminate continuum are traditionally analyzed by the stiffness method. The force method is more or less non-existent for such problems. This situation is primarily due to the incomplete state of development of the compatibility conditions which are essential for the analysis of indeterminate structures by the flexibility method. The understanding of the Compatibility Conditions (CC) has been substantially augmented. Based on the understanding of CC, a novel formulation termed the Integrated Force Method (IFM) has been established. In this paper IFM has been extended for the static and vibration analyses of a continuum. The IFM analysis is illustrated taking three examples: 1. (1) rectangular plate in flexure 2. (2) analysis of a cantilevered dam 3. (3) free vibration analysis of a beam. From the examples solved it is observed that the force response of an indeterminate continuum with mixed boundary conditions can be generated by IFM without any reference to displacements in the field or on the boundary. Displacements if required can be calculated by back substitution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The free vibration of strings with randomly varying mass and stiffness is considered. The joint probability density functions of the eigenvalues and eigenfunctions are characterized in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical solutions of these equations based on the method of stochastic averaging are obtained. The effects of the mean and autocorrelation of the mass process are included in the analysis. Numerical results for the marginal probability density functions of eigenvalues and eigenfunctions are obtained and are found to compare well with Monte Carlo simulation results. The random eigenvalues, when normalized with respect to their corresponding deterministic values, are observed to tend to become first order stochastically stationary with respect to the mode count.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flow-insensitive solutions to dataflow problems have been known to be highly scalable; however also hugely imprecise. For non-separable dataflow problems this solution is further degraded due to spurious facts generated as a result of dependence among the dataflow facts. We propose an improvement to the standard flow-insensitive analysis by creating a generalized version of the dominator relation that reduces the number of spurious facts generated. In addition, the solution obtained contains extra information to facilitate the extraction of a better solution at any program point, very close to the flow-sensitive solution. To improve the solution further, we propose the use of an intra-block variable renaming scheme. We illustrate these concepts using two classic non-separable dataflow problems --- points-to analysis and constant propagation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.