138 resultados para Noise barriers
em Indian Institute of Science - Bangalore - Índia
Resumo:
We demonstrate that the low-frequency resistance uctuations, or noise, in bilayer graphene is strongly connected to its band structure, and displays a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which oers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
We demonstrate that the low-frequency resistance fluctuations, or noise, in bilayer graphene are strongly connected to its band structure and display a minimum when the gap between the conduction and valence band is zero. Using double-gated bilayer graphene devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization, and screening properties of bilayer graphene.
Resumo:
It is a well know that electrons and positive ions are responsible in the case of electric spark. Investigation have been undertaken in the high voltage laboratory to study the effect of injecting ions (both possitive and negative)into the spark gap.Also the effect of paper screens in blocking the ions being invetsigated.
Resumo:
Based on a simple picture of speckle phenomena in optical interferometry it is shown that the recent signal-to-noise ratio estimate for the so called bispectrum, due to Wirnitzer (1985), does not possess the right limit when photon statistics is unimportant. In this wave-limit, which is true for bright sources, his calculations over-estimate the signal-to-noise ratio for the bispectrum by a factor of the order of the square root of the number of speckles.
Resumo:
New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
A discussion of the modelling of the primary and secondary noise sources introduced in the formalism of fluctuation phenomena in a previous report is presented. It is illustrated that the generalisation of the modelling of noise sources in mass transport as given by Tyagai is limited in its applicability. A general procedure for the same is discussed in detail.
Resumo:
Non-stationary signal modeling is a well addressed problem in the literature. Many methods have been proposed to model non-stationary signals such as time varying linear prediction and AM-FM modeling, the later being more popular. Estimation techniques to determine the AM-FM components of narrow-band signal, such as Hilbert transform, DESA1, DESA2, auditory processing approach, ZC approach, etc., are prevalent but their robustness to noise is not clearly addressed in the literature. This is critical for most practical applications, such as in communications. We explore the robustness of different AM-FM estimators in the presence of white Gaussian noise. Also, we have proposed three new methods for IF estimation based on non-uniform samples of the signal and multi-resolution analysis. Experimental results show that ZC based methods give better results than the popular methods such as DESA in clean condition as well as noisy condition.
Resumo:
By modifying the electrodeposition technique, we have stabilized the silver nanowires (AgNWs) in high-energy hexagonal closed packed (hcp)structure. The conductivity noise measurements show that the noise magnitude in hcp silver nanowires is several orders of magnitude smaller than that of face centered cubic (fcc) silver nanowires, which is obtained by standard over potential lectrodeposition (OPD)technique. The reduction of noise can be attributed to the restricted dislocation dynamics in hcp AgNWs due to the presence of less number of slip systems. Temperature dependent noise measurements show that the noise magnitude in hcp AgNWs is weakly temperature dependent while in fcc AgNWs it is strong function of temperature.
Resumo:
We present a low-frequency electrical noise measurement in graphene based field effect transistors. For single layer graphene (SLG), the resistance fluctuations is governed by the screening of the charge impurities by the mobile charges. However, in case of Bilayer graphene (BLG), the electrical noise is strongly connected to its band structure, and unlike single layer graphene, displays a minimum when the gap between the conduction and valence band is zero. Using double gated BLG devices we have tuned the zero gap and charge neutrality points independently, which offers a versatile mechanism to investigate the low-energy band structure, charge localization and screening properties of bilayer graphene
Resumo:
Coalescence between two droplets in a turbulent liquid-liquid dispersion is generally viewed as a consequence of forces exerted on the drop-pair squeezing out the intervening continuous phase to a critical thickness. A new synthesis is proposed herein which models the film drainage as a stochastic process driven by a suitably idealized random process for the fluctuating force. While the true test of the model lies in detailed parameter estimations with measurement of drop-size distributions in coalescing dispersions, experimental measurements on average coalescence frequencies lend preliminary support to the model.
Resumo:
The dynamics of reactions with low internal barriers are studied both analytically and numerically for two different models. Exact expressions for the average rate,kI, are obtained by solving the associated first passage time problems. Both the average rate constant, kI, and the numerically calculated long-time rate constant, kL, show a fractional power law dependence on the barrier height for very low barriers. The crossover of the reaction dynamics from low to high barrier is investigated.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.