227 resultados para Nickel-titanium coil springs
em Indian Institute of Science - Bangalore - Índia
Resumo:
Thin films of NiTi were deposited by DC magnetron sputtering from an equiatomic alloy target (Ni/Ti: 50/50 at.%). The films were deposited without intentional heating of the substrates. The thickness of the deposited films was approximately 2 mu m. The structure and morphology of NiTi films annealed at different temperatures were analyzed in order to understand the effect of annealing on physical properties of the films. The compositional investigations of fresh and annealed films were also evaluated by energy dispersive X-ray spectroscopy (EDS) and X-ray photo-electron spectroscopy (XPS) techniques. X-ray diffraction (XRD) studies showed that as-deposited films were amorphous in nature whereas annealed films were found to poly-crystalline with the presence of Austenite phase as the dominant phase. AFM investigations showed higher grain size and surface roughness values in the annealed films. In annealed films, the grain size and film roughness values were increased from 10 to 85 nm and 2-18 nm. Film composition measured by EDS were found to 52.5 atomic percent of Ni and 47.5 atomic percent of Ti. XPS investigations, demonstrated the presence of Ni content on the surface of the films, in fresh films, whereas annealed films did not show any nickel. From HR-XPS investigations, it can be concluded that annealed NiTi films have higher tendency to form metal oxide (titanium dioxide) layer on the surface of the films than fresh NiTi films. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
We focus on athermal phase transitions where in discrete and dissipative avalanches are observed in physical observables as the system jumps from one metastable state to another, when driven by an external field. Using higher order statistics of time dependent avalanches, or noise, in electrical resistivity during temperature-driven martensite transformation in thin nickel-titanium films, we demonstrate evidence suggesting the existence of a singular `global instability' or divergence of the correlation length as a function of temperature at the transition. These results not only establish a mapping of non-equilibrium first order phase transition and equilibrium critical phenomena, but perhaps also call for a re-evaluation of many existing experimental claims of self-organized criticality.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.
Resumo:
Rapid solidification, mechanical alloying and devitrificaiton of precursor metallic glasses are all possible routes for the synthesis of nanocrystals and nanocomposites, though their efficacy is system dependent. In a comprehensive study of alloys across the Ti-Ni phase diagram, nanocrystals of Ti and Ni and nanocomposites of alpha -Ti and Ti sub 2 Ni, Ti sub 2 Ni and TiNi and beta -Ti and glass have been produced. By the addition of Al, devitrification of metallic glasses created by mechanical alloying led to nanocrystalline intermetallic compounds. The evolution of these nanocrystalline microstructures has been rationalized on the basis of thermodynamic and kinetic considerations involving the metastable phase diagram for this system.
Resumo:
An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.
Resumo:
Homogeneous precipitation from solution by hydrolysis of urea at elevated temperatures (T=120 degrees C) yields novel ammonia-intercalated alpha-type hydroxide phases of the formula M(OH)(x)(NH3)(0.4)(H2O)(y)(NO3)(2-x) where x=2, y=0.68 for M=Ni and x=1.85, y=0 for M=Co. These triple-layered hexagonal phases (a=3.08+/-0.01 Angstrom, c=21.7+/-0.05 Angstrom) are more crystalline than similar phases obtained by chemical precipitation or electrosynthesis. This method can be adapted as a convenient chemical route to the bulk synthesis of alpha-hydroxides.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.
Resumo:
Orthopyroxene-clinopyroxene-plagioclase needles and symplectite along the cleavage planes and grain boundaries of fluorine-bearing titanian-ferroan pargasite from the Highland Complex, Sri Lanka, are interpreted as evidence for dehydration melting at ultrahigh-temperature conditions. High Ti (up to 0.4 pfu) and F (XF up to 0.56) content in pargasite extends its stability to higher temperatures, and the composition indicates the dehydration melting reaction may take place at ultrahigh-temperatures (~950 °C) at a pressure around 10 kbar, close to peak metamorphic conditions. The increase of Ti content close to the grain boundaries and cleavage planes in pargasite indicates titanium partitioning from the melt during dehydration melting enhanced the stability of the mineral toward ultrahigh-temperature conditions. The REE content in the pargasite shows a similar behavior to that of titanium. The cores with no breakdown assemblage consist of low and flat REE concentrations with respect to the high and Eu-depleted rim. Clinopyroxene in symplectite and needle-shaped lamellae within the pargasite porphyroblasts have similar REE patterns with slightly low-concentrations relative to that of pargasite. In the breakdown assemblage, LREEs are partitioned mainly into plagioclase while the HREEs are partitioned into orthopyroxene. The REE enrichment in the pargasite rims signals their relative partitioning between pargasite rims and melt. Modeling of the partitioning of Ti and REEs associated with pargasite breakdown demonstrates that its stability is greatly enhanced at UHT conditions. This investigation implies that the stability of hydrous minerals such as amphibole can be extended to UHT conditions, and expands our knowledge of metamorphism in the lower crust.
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
Mossbauer effect and X-ray measurements are carried out on product samples of the thermogravimetric analysis (TGA) and isothermal decomposition in hydrogen of homogeneously mixed ferrous nickel oxalates with different iron to nickel ratios. The formation of Fe-Ni alloy is obtained at considerably lower temperatures (z 300 "C) in each case. The Fe-Ni alloys obtained shift from iron-rich to nickel-rich composition as the nickel ratio in the mixed metal oxalates is increased. The formation of Pe-Ni Invar from mixed metal oxalate with Fe:Ni = 1:l is indicated in the early stages but not from those with Fe:Ni = 2: 1 or 64:36. An Produktproben von homogen verteilten Eisen-Nickeloxalaten mit unterschiedlichem Eisen- Nickel-Verhaltnis nach thermogravimetrischer Analyse (TGA) und isothermem Zerfall in Wasserst off werden Mollbauereffekt- und Rontgenmessnngen durchgefuhrt. In allen Fiillen wird die Bildung der Fe-Ni-Legierung bei betriichtlich niedrigeren Temperaturen (= 300 "C) erhalten. Die erhaltenen Fe-Ni-Legierungen verschieben sich von der eisenreichen zur nickelreichen Zusrtmmensetzung, wenn das Nickelverhaltnis in dem BIetall-Mischoxalat erhoht wird. Die Bildung der Fe-Ni-lnvar-Legierung aus dem Metall-Mischoxalat mit Fe:Ni = 1 : 1 wird in fruhen Zu Zustanden beobachtet, iedoch nicht aus Oxalaten mit Fe:Ni = 2:1 oder 64:36.
Resumo:
Mixed ligand complexes of the type Ni(R-AB)(AC') and Ni(R-AC)(AB') where AB/AC denote N-bonded isonitroso- [3-ketoimino ligands, AB'/AC' denote the corresponding Obonded ligands and R = Me, Et, n-Pr are synthesised and characterised. The complexes are neutral with square planar geometry around nickel(II). The bonding isomerism of the isonitroso group is discussed on the basis of i.r. and 1H n.m.r. studies. The crystal structure of the title complex, Ni(n-Pr-IEAI)(IMAI') has been determined from diffractometer data by Patterson and Fourier methods and refined by least squares to R = 0.088 for 2209 observed reflections. Unit cell constants are: a = 11.945(2), b = 22.436(7), c = 13.248(5) ~, [3 = 95.13(2) ~ The space group is P2Jc with Z = 8. Niekel(II) has a square planar coordination of two imine nitrogens, an isonitroso-nitrogen (from n-Pr-IEAI) and another isonitrosooxygen (from IMAI').
Resumo:
In this letter, a conclusive evidence of the operation of planar slip along with grain boundary mediated mechanisms has been reported during large strain deformation of nanocrystalline nickel. Dislocation annihilation mechanism such as mechanical recovery has been found to play an important role during the course of deformation. The evidences rely on x-ray based techniques, such as dislocation density determination and crystallographic texture measurement as well as microstructural observation by electron microscopy. The characteristic texture evolution in this case is an indication of normal slip mediated plasticity in nanocrystalline nickel.