270 resultados para Nickel steel
em Indian Institute of Science - Bangalore - Índia
Resumo:
An oscillating droplet method combined with electromagnetic levitation has been applied to determine the surface tensions of liquid pure iron, nickel and iron-nickel alloys as a function of the temperature. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser. The theoretical background of this method and the experimental set-up were described, and the influence of magnetic field strength was also discussed. The experimental results were compared with those of other investigators and interpreted using theoretical models (Butler's equation, subregular and perfect solution model for the surface phase).
Resumo:
In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Electrodeposition of nickel/barium hexa-aluminate (Ni/BHA) composite coatings has been carried out from a Watt's bath on mild steel substrate. BHA powders with plate habit were synthesized by solution combustion synthesis followed by heat treatment to ensure complete conversion to the hexa-aluminate phase. Heat treated material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with X-ray analysis. The dispersion behaviour and stability of BHA suspensions with cationic and anionic surfactants at room temperature were studied by dynamic light scattering under different pH. The influence of BHA concentration in the electrolytic bath, deposition temperature, pH, current density and duty cycle on particle incorporation in the coatings were studied and conditions for maximum particle incorporation were established. Coatings with a roughness of about 0 center dot 4 mu m were produced by using this technique. Effect of BHA content on microhardness was also investigated. A reasonably good thickness of the coatings was achieved in a given set of conditions.
Resumo:
Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.
Resumo:
Fretting is of a serious concern in many industrial components, specifically, in nuclear industry for the safe and reliable operation of various component and/or system. Under fretting condition small amplitude oscillations induce surface degradation in the form of surface cracks and/or surface wear. Comprehensive experimental studies have been carried out simulating different fretting regimes under ambient and vacuum (10(-9) MPa) conditions and, temperature up to 400 degrees C. Studies have been carried out with stainless steel spheres on stainless steel flats, and stainless steel spheres against chromium carbide, with 25% nickel chrome binder coatings. Mechanical responses are correlated with the damage observed. It has been observed that adhesion plays a vital role in material degradation process, and its effectiveness depends on mechanical variables such as normal load, interfacial tangential displacement, characteristics of the contacting bodies and most importantly on the environment conditions. Material degradation mechanism for ductile materials involved severe plastic deformation, which results in the initiation or nucleation of cracks. Ratcheting has been observed as the governing damage mode for crack nucleation under cyclic tangential loading condition. Further, propagation of the cracks has been observed under fatigue and their orientation has been observed to be governed by the contact conditions prevailing at the contact interface. Coated surfaces show damage in the form of brittle fracture and spalling of the coatings. Existence of stick slip has been observed under high normal load and low displacement amplitude. It has also been observed that adhesion at the contact interface and instantaneous cohesive strength of the contacting bodies dictates the occurrence of material transfer. The paper discusses the mechanics and mechanisms involved in fretting damage under controlled environment conditions. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.
Resumo:
The development of a microstructure in 304L stainless steel during industrial hot-forming operations, including press forging (mean strain rate of 0.15 s(-1)), rolling/extrusion (2-5 s(-1)), and hammer forging (100 s(-1)) at different temperatures in the range 600-1200 degrees C, was studied with a view to validating the predictions of the processing map. The results have shown that excellent correlation exists between the regimes exhibited by the map and the product microstructures. 304L stainless steel exhibits instability bands when hammer forged at temperatures below 1100 degrees C, rolled/extruded below 1000 degrees C, or press forged below 800 degrees C. All of these conditions must be avoided in mechanical processing of the material. On the other hand, ideally, the material may be rolled, extruded, or press forged at 1200 degrees C to obtain a defect-free microstructure.
Resumo:
In the present investigation, ion nitriding of Maraging steel (250 grade) has been carried out at three different temperatures i.e., at 435 degrees C, 450 degrees C and 465 degrees C for 10 h duration in order to achieve good wear resistance along with high strength required for the slat track component of aircraft. The microstructure of the base material and the nitrided layer was examined by optical and scanning electron microscope, and various phases present were determined by X-ray diffraction. Various properties, such as, hardness, case depth, tensile, impact, fatigue properties and corrosion resistance were investigated for both un-nitrided and ion-nitrided materials. It is observed that the microstructure of the core material remains unaltered and Fe4N is formed in the hardened surface layer after ion nitriding at all the three temperatures employed. Surface hardness increases substantially after ion nitriding. Surface hardness remains almost the same but case depth increases with the increase in ion nitriding temperature due to greater diffusivity at higher temperatures. Tensile strength, fatigue strength and corrosion resistance are improved but ductility and energy absorbed in impact test decrease on ion nitriding. These results are explained on the basis of microstructural observations. The properties obtained after ion nitriding at 450 degrees C for 10 h are found to be optimum when compared to the other two ion nitriding temperatures.
Resumo:
Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.
Resumo:
An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.
Resumo:
Homogeneous precipitation from solution by hydrolysis of urea at elevated temperatures (T=120 degrees C) yields novel ammonia-intercalated alpha-type hydroxide phases of the formula M(OH)(x)(NH3)(0.4)(H2O)(y)(NO3)(2-x) where x=2, y=0.68 for M=Ni and x=1.85, y=0 for M=Co. These triple-layered hexagonal phases (a=3.08+/-0.01 Angstrom, c=21.7+/-0.05 Angstrom) are more crystalline than similar phases obtained by chemical precipitation or electrosynthesis. This method can be adapted as a convenient chemical route to the bulk synthesis of alpha-hydroxides.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.
Resumo:
Self-assembled monolayers of fatty acids were formed on stainless steel by room-temperature solution deposition. The acids are covalently bound to the Surface as carboxylate in a bidentate manner. To explore the effect Of Saturation in the carbon backbone on friction in sliding tribology, we Study the response of saturated stearic acid (SA) and unsaturated linoleic acid (LA) as self-assembled monolayers using lateral force microscopy and nanotribometry and when the molecules are dispersed in hexadecane, using pin-on-disc tribometry. Over a very wide range (10 MPa-2.5 GPa) of contact pressures it is consistently demonstrated that the unsaturated linoleic acid molecules yield friction which is significantly lower than that of the saturated stearic acid. it is argued, using density functional theory predictions and XPS of slid track, that when the molecular backbone of unsaturated fatty acids are tilted and pressed strongly by a probe, in tribological contact, the high charge density of the double bond region of the backbone allows coupling with the steel Substrate. The interaction yields a low friction carboxylate soap film on the substrate. The saturated fatty acid does not show this effect.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.