132 resultados para Neural strategies
em Indian Institute of Science - Bangalore - Índia
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.
Resumo:
Tethered satellites deployed from the Space Shuttle have been proposed for diverse applications. A funda- mental issue in the utilization of tethers is quick deployment and retrieval of the attached payload. Inordinate librations of the tether during deployment and retrieval is undesirable. The structural damping present in the system is too low to contain the librations. Rupp [1] proposed to control the tether reel located in the parent spacecraft to alter the tension in the tether, which in turn changes the stiffness and the damping of the system. Baker[2] applied the tension control law to a model which included out of plane motion. Modi et al.[3] proposed a control law that included nonlinear feedback of the out-of plane tether angular rate. More recently, nonlinear feedback control laws based on Liapunov functions have been proposed. Two control laws are derived in [4]. The first is based on partial decomposition of the equations of motion and utilization of a two dimensional control law developed in [5]. The other is based on a Liapunov function that takes into consideration out-of-plane motion. It is shown[4] that the control laws are effective when used in conjunction with out-of-plane thrusting. Fujii et al.,[6] used the mission function control approach to study the control law including aerodynamic drag effect explicitly into the control algorithm.
Resumo:
The Artificial Neural Networks (ANNs) are being used to solve a variety of problems in pattern recognition, robotic control, VLSI CAD and other areas. In most of these applications, a speedy response from the ANNs is imperative. However, ANNs comprise a large number of artificial neurons, and a massive interconnection network among them. Hence, implementation of these ANNs involves execution of computer-intensive operations. The usage of multiprocessor systems therefore becomes necessary. In this article, we have presented the implementation of ART1 and ART2 ANNs on ring and mesh architectures. The overall system design and implementation aspects are presented. The performance of the algorithm on ring, 2-dimensional mesh and n-dimensional mesh topologies is presented. The parallel algorithm presented for implementation of ART1 is not specific to any particular architecture. The parallel algorithm for ARTE is more suitable for a ring architecture.
Resumo:
This paper presents an off-line (finite time interval) and on-line learning direct adaptive neural controller for an unstable helicopter. The neural controller is designed to track pitch rate command signal generated using the reference model. A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. For the simulation study, a linearized helicopter model at different straight and level flight conditions is considered. A neural network with a linear filter architecture trained using backpropagation through time is used to approximate the control law. The controller network parameters are adapted using updated rules Lyapunov synthesis. The off-line trained (for finite time interval) network provides the necessary stability and tracking performance. The on-line learning is used to adapt the network under varying flight conditions. The on-line learning ability is demonstrated through parameter uncertainties. The performance of the proposed direct adaptive neural controller (DANC) is compared with feedback error learning neural controller (FENC).
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
Cooperation among unrelated individuals is an enduring evolutionary riddle and a number of possible solutions have been suggested. Most of these suggestions attempt to refine cooperative strategies, while little attention is given to the fact that novel defection strategies can also evolve in the population. Especially in the presence of punishment to the defectors and public knowledge of strategies employed by the players, a defecting strategy that avoids getting punished by selectively cooperating only with the punishers can get a selective benefit over non-conditional defectors. Furthermore, if punishment ensures cooperation from such discriminating defectors, defectors who punish other defectors can evolve as well. We show that such discriminating and punishing defectors can evolve in the population by natural selection in a Prisoner’s Dilemma game scenario, even if discrimination is a costly act. These refined defection strategies destabilize unconditional defectors. They themselves are, however, unstable in the population. Discriminating defectors give selective benefit to the punishers in the presence of non-punishers by cooperating with them and defecting with others. However, since these players also defect with other discriminators they suffer fitness loss in the pure population. Among the punishers, punishing cooperators always benefit in contrast to the punishing defectors, as the latter not only defect with other punishing defectors but also punish them and get punished. As a consequence of both these scenarios, punishing cooperators get stabilized in the population. We thus show ironically that refined defection strategies stabilize cooperation. Furthermore, cooperation stabilized by such defectors can work under a wide range of initial conditions and is robust to mistakes.
Resumo:
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10(-5) cd m(-2), implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.
Resumo:
Screen-less oscillation photography is the method of choice for recording three-dimensional X-ray diffraction data for crystals of biological macromolecules. The geometry of an oscillation camera is extremely simple. However, the manner in which the reciprocal lattice is recorded in any experiment is fairly complex. This depends on the Laue symmetry of the reciprocal lattice, the lattice type, the orientation of the crystal on the camera and to a lesser extent on the unit-cell dimensions. Exploring the relative efficiency of collecting X-ray diffraction data for different crystal orientations prior to data collection might reduce the number of films required to record most of the unique data and the consequent amount of time required for processing these films. Here algorithms are presented suitable for this purpose and results are reported for the 11 Laue groups, different lattice types and crystal orientations often employed in data collection.
Resumo:
Cyclohexa-1, 4-dienes with appropriate substituents, obtained by birch reduction of the substituted benzene, react directly with derivatives of propiolic ester or aldchyde to yield aromatic polyketides. The following compounds have been synthesized; mycophenolic acid, nidulol methyl other, the root growth hormone 3, 5-dihydroxy-2-formyl-4-mythyl-benzoic acid, antibiotic DB 2073, the macrocyclic lactones lasiodiplodin and dihydrozearalenone and the biphenyl derivatives alternario and altenusin. Polyketide anthraquinones can be made from naphthoquinone precursors.
Resumo:
1-Methoxycyclohexa-1,4-dienes are readily available from the metal-ammonia-alcohol reduction of aromatic ethers. The use of these dihydrocompounds in the synthesis of a variety of natural products is reviewed.
Resumo:
Protein kinases phosphorylate several cellular proteins providing control mechanisms for various signalling processes. Their activity is impeded in a number of ways and restored by alteration in their structural properties leading to a catalytically active state. Most protein kinases are subjected to positive and negative regulation by phosphorylation of Ser/Thr/Tyr residues at specific sites within and outside the catalytic core. The current review describes the analysis on 3D structures of protein kinases that revealed features distinct to active states of Ser/Thr and Tyr kinases. The nature and extent of interactions among well-conserved residues surrounding the permissive phosphorylation sites differ among the two classes of enzymes. The network of interactions of highly conserved Arg preceding the catalytic base that mediates stabilization of the activation segment exemplifies such diverse interactions in the two groups of kinases. The N-terminal and the C-terminal lobes of various groups of protein kinases further show variations in their extent of coupling as suggested from the extent of interactions between key functional residues in activation segment and the N-terminal αC-helix. We observe higher similarity in the conformations of ATP bound to active forms of protein kinases compared to ATP conformations in the inactive forms of kinases. The extent of structural variations accompanying phosphorylation of protein kinases is widely varied. The comparison of their crystal structures and the distinct features observed are hoped to aid in the understanding of mechanisms underlying the control of the catalytic activity of distinct subgroups of protein kinases.
Resumo:
Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.
Resumo:
Salmonella has evolved several strategies to counteract intracellular microbicidal agents like reactive oxygen and nitrogen species. However, it is not yet clear how Salmonella escapes lysosomal degradation. Some studies have demonstrated that Salmonella can inhibit phagolysosomal fusion, whereas other reports have shown that the Salmonella-containing vacuole (SCV) fuses/interacts with lysosomes. Here, we have addressed this issue from a different perspective by investigating if the infected host cell has a sufficient quantity of lysosomes to target Salmonella. Our results suggest that SCVs divide along with Salmonella, resulting in a single bacterium per SCV. As a consequence, the SCV load per cell increases with the division of Salmonella inside the host cell. This demands more investment from the host cell to counteract Salmonella. Interestingly, we observed that Salmonella infection decreases the number of acidic lysosomes inside the host cell both in vitro and in vivo. These events potentially result in a condition in which an infected cell is left with insufficient acidic lysosomes to target the increasing number of SCVs, which favors the survival and proliferation of Salmonella inside the host cell.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.