105 resultados para Neonates, EEG Analysis, Fractal Dimensions, Signal Processing

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study performance of Katz method of computing fractal dimension of waveforms, and its estimation accuracy is compared with Higuchi's method. The study is performed on four synthetic parametric fractal waveforms for which true fractal dimensions can be calculated, and real sleep electroencephalogram. The dependence of Katz's fractal dimension on amplitude, frequency and sampling frequency of waveforms is noted. Even though the Higuchi's method has given more accurate estimation of fractal dimensions, the study suggests that the results of Katz's based fractal dimension analysis of biomedical waveforms have to be carefully interpreted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and performance analysis of a detector based on suprathreshold stochastic resonance (SSR) for the detection of deterministic signals in heavy-tailed non-Gaussian noise. The detector consists of a matched filter preceded by an SSR system which acts as a preprocessor. The SSR system is composed of an array of 2-level quantizers with independent and identically distributed (i.i.d) noise added to the input of each quantizer. The standard deviation sigma of quantizer noise is chosen to maximize the detection probability for a given false alarm probability. In the case of a weak signal, the optimum sigma also minimizes the mean-square difference between the output of the quantizer array and the output of the nonlinear transformation of the locally optimum detector. The optimum sigma depends only on the probability density functions (pdfs) of input noise and quantizer noise for weak signals, and also on the signal amplitude and the false alarm probability for non-weak signals. Improvement in detector performance stems primarily from quantization and to a lesser extent from the optimization of quantizer noise. For most input noise pdfs, the performance of the SSR detector is very close to that of the optimum detector. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a methodology for dynamic analysis of short term small signal voltage instability in a multi-machine power system. The formulation of the problem is done by decoupling the angle instability from the voltage instability. The method is based on the incremental reactive current flow network (IRCFN), where the incremental reactive current injection at each bus is related to the incremental voltage magnitude at all the buses. Small signal stability using the eigenvalue analysis is illustrated utilizing a single-machine load bus (SMLB) and three-machine system examples. The role of a static var compensator (SVC) at the load bus is also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiresolution synthetic aperture radar (SAR) image formation has been proven to be beneficial in a variety of applications such as improved imaging and target detection as well as speckle reduction. SAR signal processing traditionally carried out in the Fourier domain has inherent limitations in the context of image formation at hierarchical scales. We present a generalized approach to the formation of multiresolution SAR images using biorthogonal shift-invariant discrete wavelet transform (SIDWT) in both range and azimuth directions. Particularly in azimuth, the inherent subband decomposition property of wavelet packet transform is introduced to produce multiscale complex matched filtering without involving any approximations. This generalized approach also includes the formulation of multilook processing within the discrete wavelet transform (DWT) paradigm. The efficiency of the algorithm in parallel form of execution to generate hierarchical scale SAR images is shown. Analytical results and sample imagery of diffuse backscatter are presented to validate the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal Dimensions (FD) are popular metrics for characterizing signals. They are used as complexity measuresin signal analysis applications in various fields. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency,number of harmonics, noise power and signal bandwidth. We have used Higuchi’s method for estimating FDs. This study helps in gaining a better understanding of the FD complexity measure for various signal parameters. Our results indicate that FD is a useful metric in estimating various signal properties. As an application of the FD measure in real world scenario, the FD is used as a feature in discriminating seizures from seizure free intervals in intracranial EEG data recordings and the FD feature has given good discrimination performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an approach to estimate fractal complexity of discrete time signal waveforms based on computation of area bounded by sample points of the signal at different time resolutions. The slope of best straight line fit to the graph of log(A(rk)A / rk(2)) versus log(l/rk) is estimated, where A(rk) is the area computed at different time resolutions and rk time resolutions at which the area have been computed. The slope quantifies complexity of the signal and it is taken as an estimate of the fractal dimension (FD). The proposed approach is used to estimate the fractal dimension of parametric fractal signals with known fractal dimensions and the method has given accurate results. The estimation accuracy of the method is compared with that of Higuchi's and Sevcik's methods. The proposed method has given more accurate results when compared with that of Sevcik's method and the results are comparable to that of the Higuchi's method. The practical application of the complexity measure in detecting change in complexity of signals is discussed using real sleep electroencephalogram recordings from eight different subjects. The FD-based approach has shown good performance in discriminating different stages of sleep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractal Dimensions (FD) are one of the popular measures used for characterizing signals. They have been used as complexity measures of signals in various fields including speech and biomedical applications. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchi's method for estimating FDs. This study may help in gaining a better understanding of the FD complexity measure itself, and for interpreting changing structural complexity of signals in terms of FD. Our results indicate that FD is a useful measure in quantifying structural changes in signal properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have studied electroencephalogram (EEG) activity of schizophrenia patients, in resting eyes closed condition, with detrended fluctuation analysis (DFA). The DFA gives information about scaling and long-range correlations in time series. We computed DFA exponents from 30 scalp locations of 18 male neuroleptic-naIve, recent-onset schizophrenia (NRS) subjects and 15 healthy male control subjects. Our results have shown two scaling regions in all the scalp locations in all the subjects, with different slopes, corresponding to two scaling exponents. No significant differences between the groups were found with first scaling exponent (short-range). However, the second scaling exponent (long-range) were significantly lower in control subjects at all scalp locations (p<0.05, Kruskal-Wallis test). These findings suggest that the long-range scaling behavior of EEG is sensitive to schizophrenia, and this may provide an additional insight into the brain dysfunction in schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Running fractal dimensions were measured on four channels of an electroencephalogram (EEG) recorded from a normal volunteer. The changes in the background activity due to eye closure were clearly differentiated by the fractal method. The compressed spectral array (CSA) and the running fractal dimensions of the EEG showed corresponding changes with respect to change in the background activity. The fractal method was also successful in detecting low amplitude spikes and the changes in the patterns in the EEG. The effects of different window lengths and shifts on the running fractal dimension have also been studied. The utility of fractal method for EEG data compression is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the issue of noise robustness of reconstruction techniques for frequency-domain optical-coherence tomography (FDOCT). We consider three reconstruction techniques: Fourier, iterative phase recovery, and cepstral techniques. We characterize the reconstructions in terms of their statistical bias and variance and obtain approximate analytical expressions under the assumption of small noise. We also perform Monte Carlo analyses and show that the experimental results are in agreement with the theoretical predictions. It turns out that the iterative and cepstral techniques yield reconstructions with a smaller bias than the Fourier method. The three techniques, however, have identical variance profiles, and their consistency increases linearly as a function of the signal-to-noise ratio.