2 resultados para Neighbourhoods

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results: In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions: Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rainbow colouring of a connected graph is a colouring of the edges of the graph, such that every pair of vertices is connected by at least one path in which no two edges are coloured the same. Such a colouring using minimum possible number of colours is called an optimal rainbow colouring, and the minimum number of colours required is called the rainbow connection number of the graph. A Chordal Graph is a graph in which every cycle of length more than 3 has a chord. A Split Graph is a chordal graph whose vertices can be partitioned into a clique and an independent set. A threshold graph is a split graph in which the neighbourhoods of the independent set vertices form a linear order under set inclusion. In this article, we show the following: 1. The problem of deciding whether a graph can be rainbow coloured using 3 colours remains NP-complete even when restricted to the class of split graphs. However, any split graph can be rainbow coloured in linear time using at most one more colour than the optimum. 2. For every integer k ≥ 3, the problem of deciding whether a graph can be rainbow coloured using k colours remains NP-complete even when restricted to the class of chordal graphs. 3. For every positive integer k, threshold graphs with rainbow connection number k can be characterised based on their degree sequence alone. Further, we can optimally rainbow colour a threshold graph in linear time.