4 resultados para Neighbourhood semantics
em Indian Institute of Science - Bangalore - Índia
Resumo:
The recent spurt of research activities in Entity-Relationship Approach to databases calls for a close scrutiny of the semantics of the underlying Entity-Relationship models, data manipulation languages, data definition languages, etc. For reasons well known, it is very desirable and sometimes imperative to give formal description of the semantics. In this paper, we consider a specific ER model, the generalized Entity-Relationship model (without attributes on relationships) and give denotational semantics for the model as well as a simple ER algebra based on the model. Our formalism is based on the Vienna Development Method—the meta language (VDM). We also discuss the salient features of the given semantics in detail and suggest directions for further work.
Resumo:
A method for determining the mutual nearest neighbours (MNN) and mutual neighbourhood value (mnv) of a sample point, using the conventional nearest neighbours, is suggested. A nonparametric, hierarchical, agglomerative clustering algorithm is developed using the above concepts. The algorithm is simple, deterministic, noniterative, requires low storage and is able to discern spherical and nonspherical clusters. The method is applicable to a wide class of data of arbitrary shape, large size and high dimensionality. The algorithm can discern mutually homogenous clusters. Strong or weak patterns can be discerned by properly choosing the neighbourhood width.
Resumo:
The heat and mass transfer for unsteady laminar compressible boundary-layer flow, which is asymmetric with respect to a 3-dimensional stagnation point (i.e. for a jet incident at an angle on the body), have been studied. It is assumed that the free-stream velocity, wall temperature, and surface mass transfer vary arbitrarily with time and also that the gas has variable properties. The solution in the neighbourhood of the stagnation point has been obtained by series expansion in the longitudinal distance. The resulting partial differential equations have been solved numerically using an implicit finite-difference scheme. The results show that, in contrast with the symmetric flow, the maximum heat transfer does not occur at the stagnation point. The skin-friction and heat-transfer components due to asymmetric flow are only weakly affected by the mass transfer as compared to those components associated with symmetric flow. The variation of the wall temperature with time has a strong effect on the heat transfer component associated with the symmetric part of the flow. The skin friction and heat transfer are strongly affected by the variation of the density-viscosity product across the boundary layer. The skin friction responds more to the fluctuations of the free stream oscillating velocities than the heat transfer. The results have been compared with the available results and they are found to be in excellent agreement.
Resumo:
This paper describes the application of vector spaces over Galois fields, for obtaining a formal description of a picture in the form of a very compact, non-redundant, unique syntactic code. Two different methods of encoding are described. Both these methods consist in identifying the given picture as a matrix (called picture matrix) over a finite field. In the first method, the eigenvalues and eigenvectors of this matrix are obtained. The eigenvector expansion theorem is then used to reconstruct the original matrix. If several of the eigenvalues happen to be zero this scheme results in a considerable compression. In the second method, the picture matrix is reduced to a primitive diagonal form (Hermite canonical form) by elementary row and column transformations. These sequences of elementary transformations constitute a unique and unambiguous syntactic code-called Hermite code—for reconstructing the picture from the primitive diagonal matrix. A good compression of the picture results, if the rank of the matrix is considerably lower than its order. An important aspect of this code is that it preserves the neighbourhood relations in the picture and the primitive remains invariant under translation, rotation, reflection, enlargement and replication. It is also possible to derive the codes for these transformed pictures from the Hermite code of the original picture by simple algebraic manipulation. This code will find extensive applications in picture compression, storage, retrieval, transmission and in designing pattern recognition and artificial intelligence systems.