4 resultados para Nectandra grandiflora

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is an isometric, ss-RNA plant virus found infecting Sesbania grandiflora plants in fields near Tirupathi, South India. The virus particles, which sediment at 116 S at pH 5.5, swell upon treatment with EDTA at pH 7.5 resulting in the reduction of the sedimentation coefficient to 108 S. SMV coat protein amino acid sequence was determined and found to have approximately 60% amino acid sequence identity with that of southern bean mosaic virus (SBMV). The amino terminal 60 residue segment, which contains a number of positively charged residues, is less well conserved between SMV and SBMV when compared to the rest of the sequence. The 3D structure of SMV was determined at 3.0 Å resolution by molecular replacement techniques using SBMV structure as the initial phasing model. The icosahedral asymmetric unit was found to contain four calcium ions occurring in inter subunit interfaces and three protein subunits, designated A, B and C. The conformation of the C subunit appears to be different from those of A and B in several segments of the polypeptide. These observations coupled with structural studies on SMV partially depleted of calcium suggest a plausible mechanisms for the initiation of the disassembly of the virus capsid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is a plant virus that infects Sesbania grandiflora plants in Andhra Pradesh, India. The amino acid sequence of the coat protein of SMV was determined using purified peptides generated by cleavage with trypsin, chymotrypsin, V8 protease and clostripain. The 230 residues so far determined were compared to the corresponding residues of southern bean mosaic virus (SBMV), the type member of sobemoviruses. The overall identity between the sequences is 61.7%. The amino terminal 64 residues, which constitute an independent domain (R-domain) known to interact with RNA, are conserved to a lower extent (52.5%). Comparison of the positively charged residues in this domain suggests that the RNA-protein interactions are considerably weaker in SMV. The residues that constitute the major domain of the coat protein, the surface domain (S-domain, residues 65-260), are better conserved (66.5%). The positively charged residues of this domain that face the nucleic acid are well conserved. The longest conserved stretch of residues (131-142) corresponds to the loop involved in intersubunit interactions between subunits related by the quasi 3-fold symmetry. A unique cation binding site located on the quasi 3-fold axis contributes to the stability of SMV. These differences are reflected in the increased stability of the SMV coat protein and its ability to be reconstituted with RNA at pH 7.5. A major epitope was identified using monoclonal antibodies to SMV in the segment 201-223 which contains an exposed helix in the capsid structure. This region is highly conserved between SMV and SBMV (70%) suggesting that it could represent the site of an important function such as vector recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a positive stranded RNA virus belonging to the genus Sobemovirus. Construction of an infectious clone is an essential step for deciphering the virus gene functions in vivo. Using Agrobacterium based transient expression system we show that SeMV icDNA is infectious on Sesbania grandiflora and Cyamopsis tetragonoloba plants. The efficiency of icDNA infection was found to be significantly high on Cyamopsis plants when compared to that on Sesbania grandiflora. The coat protein could be detected within 6 days post infiltration in the infiltrated leaves. Different species of viral RNA (double stranded and single stranded genomic and subgenomic RNA) could be detected upon northern analysis, suggesting that complete replication had taken place. Based on the analysis of the sequences at the genomic termini of progeny RNA from SeMV icDNA infiltrated leaves and those of its 3' and 5' terminal deletion mutants, we propose a possible mechanism for 3' and 5' end repair in vivo. Mutation of the cleavage sites in the polyproteins encoded by ORF 2 resulted in complete loss of infection by the icDNA, suggesting the importance of correct polyprotein processing at all the four cleavage sites for viral replication. Complementation analysis suggested that ORF 2 gene products can act in trans. However, the trans acting ability of ORF 2 gene products was abolished upon deletion of the N-terminal hydrophobic domain of polyprotein 2a and 2ab, suggesting that these products necessarily function at the replication site, where they are anchored to membranes.