105 resultados para Near-infrared and visible light emitters

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physico-chemical, photo-physical and micro-structural properties responsible for the strikingly different photocatalytic behavior of combustion-prepared TiO2 (c.TiO2) and Degussa P25 (d.TiO2) samples are elucidated in this study. Electron microscopy and selected area electron diffraction micrographs revealed that the two samples exhibited different morphologies. The grains of c.TiO2 were spherical and comprised of 5-6 nm size primary particle. On the other hand, d.TiO2 consisted of large (0.5-3.0 mu m) size and irregular shape aggregates having primary particles of 15-40 nm cross-sectional diameter. The ESR study revealed that the presence of certain defect states in c.TiO2 helped in stabilization of O-. and Ti3+-OH type species during room-temperature UV-irradiation. No such paramagnetic species were however formed over d.TiO2 under similar conditions. C1s and Ti 2p XPS spectra provide evidence for the presence of some lattice vacancies in c.TiO2 and also for the bulk Ti4+ -> Ti3+ conversion during its UV-irradiation. Compared to d.TiO2, c.TiO2 displayed considerably higher activity for discoloration of methyl orange but very poor activity for splitting of water, both under UV and visible light radiations. This is attributed to enhanced surface adsorption of dye molecules over c.TiO2, because of its textural features and also the presence of photo-active ion-radicals. On the other hand, the poor activity of c.TiO2 for water splitting is related to certain defect-induced inter-band charge trapping states in the close vicinity of valence and conduction bands of c.TiO2, as revealed by thermoluminescence spectroscopy. Further, the dispersion of nanosize gold particles gave rise to augmented activity of both the catalysts, particularly for water splitting. This is explained by the promotional role of Au-0 or Au-0/TiO2 interfacial sites in the adsorption and charge-adsorbate interaction processes. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-ion- (Ag, Co, Ni and Pd) doped titania nanocatalysts were successfully deposited on glass slides by layer-by-layer (LbL) self-assembly technique using a poly(styrene sulfonate sodium salt) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolyte system. Solid diffuse reflectance (SDR) studies showed a linear increase in absorbance at 416 nm with increase in the number of m-TiO2 thin films. The LbL assembled thin films were tested for their photocatalytic activity through the degradation of Rhodamine B under visible-light illumination. From the scanning electron microscope (SEM), the thin films had a porous morphology and the atomic force microscope (AFM) studies showed ``rough'' surfaces. The porous and rough surface morphology resulted in high surface areas hence the high photocatalytic degradation (up to 97% over a 6.5 h irradiation period) using visible-light observed. Increasing the number of multilayers deposited on the glass slides resulted in increased film thickness and an increased rate of photodegradation due to increase in the availability of more nanocatalysts (more sites for photodegradation). The LbL assembled thin films had strong adhesion properties which made them highly stable thus displaying the same efficiencies after five (5) reusability cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms.Methods: A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model base numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. Results: The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. Conclusions: The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3456441]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel and simple route for near-infrared (NIR)-light controlled release of drugs has been demonstrated using graphene oxide (GO) composite microcapsules based on the unique optical properties of GO. Upon NIR-laser irradiation, the microcapsules were ruptured in a point-wise fashion due to local heating which in turn triggers the light-controlled release of the encapsulated anticancer drug doxorubicin (Dox) from these capsules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes, VO(acac)(L)Cl] (1), VO(cur)(L)Cl] (2), and VO(scur)(L)Cl] (3) {acac = acetylacetonate, cur = curcumin monoanion, scur = diglucosylcurcumin monoanion, L = 11-(9-acridinyl)dipyrido3, 2-a:2',3'-c]phenazine (acdppz)}, were prepared and characterized. The complexes are non-electrolytic in DMF and 1:1 electrolytic in aqueous DMF. The one-electron paramagnetic complexes showed a d-d band near 725 nm in aqueous DMF and green emission near 520 nm in aqueous DMSO. The complexes exhibited an irreversible V-IV/V-III redox response near -0.85 V versus SCE in aqueous DMF. The complexes showed good binding strengths to calf thymus DNA (K-b: 3.1x10(5)-9.6x10(5) M-1) and efficient pUC19 DNA photocleavage activity in red light of 705 and 785 nm by singlet oxygen (O-1(2)) pathway. Complexes 1 and 2 exhibited significant photocytotoxicity (IC50: 0.1-1.0 M) in visible light (400-700 nm) with low dark toxicity (IC50: >20 M) in HeLa and HaCaT cells. Complex 3 was cytotoxic in both light and dark. DNA ladder formation experiments indicated cell death via apoptotic pathway. Confocal microscopy done with 1 and 2 revealed primarily cytosolic localization of the complexes with significant presence of the complex in the mitochondria as evidenced from the imaging data using mitotracker red.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidovanadium(IV) complexes of 2-(2'-pyridyl)-1,10-phenanthroline (pyphen), viz. VO(pyphen)(acac)](ClO4) (1), VO(pyphen)(anacac)](ClO4) (2) and VO(pyphen)(cur)](ClO4) (3), where acac is acetylacetonate (in 1), anacac is anthracenylacetylacetonate (in 2) and cur is curcumin monoanion (in 3) were synthesized, characterized and their photo-induced DNA cleavage activities and photo-cytotoxicities studied. The complexes are 1: 1 electrolytes in DMF. The one-electron paramagnetic complexes show a d-d band near 760 nm in DMF. Complexes 2 and 3 are blue and green emissive, respectively, in DMSO. The complexes exhibit irreversible V-IV/V-III reductive responses near -1.1 V and V-V/V-IV oxidative responses near 0.85 V vs. SCE in DMF-0.1 M TBAP. Complexes 2 and 3 display significant and selective photo-cytotoxicity upon irradiation with visible light giving an IC50 value of about 5 mu M against HeLa and MCF-7 cancer cells; they are significantly less-toxic against normal 3T3 control cells and in the absence of light. Complex 1 was used as a control. Both cytosolic and nuclear localization of the complexes were observed on the basis of fluorescence imaging. The complexes, avid binders to calf thymus (ct) DNA, were found to photocleave supercoiled pUC19 DNA upon irradiation with near-IR light (785 nm) by generating hydroxyl radical (OH) as the reactive oxygen species (ROS). Cell death events noted with HeLa and MCF-7 cell lines likely are attributable to apoptotic pathways involving light-assisted generation of intracellular ROS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six new mixed-ligand cobalt(III) complexes of formulation Co(N-N)(2)(O-O)](ClO4)(2) (1-6), where N-N is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido3,2-d:2',3'-f] quinoxaline (dpq in 3, 4), and dipyrido3,2-a:2',3'-c]phenazine (dppz in 5, 6), O-O is acetylacetonate (acac in 1, 3, 5) or curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, cur in 2, 4, 6), have been synthesized and characterized. The X-ray crystal structures of complex 1 (as PF6- salt, 1a) and 3 show distorted octahedral geometries formed by the CoN4O2 core. The complexes 1, 3 and 5 having the simple acac ligand are prepared as control species to understand the role of curcumin. The optimized geometries and the frontier orbitals of the curcumin complexes 2, 4, and 6 are obtained from the DFT calculations. The complexes 2, 4, and 6 having the photoactive curcumin moiety display an absorption band in the visible region near 420 nm and show remarkable photocytotoxicity in HeLa cancer cells with respective IC50 values of 7.4 mu M, 5.1 mu M and 1.6 mu M while being much less toxic in dark. MTT assay using complex 6 shows that it is not significantly photocytotoxic to MCF-10A normal cells. The control complexes having the acac ligand are non-toxic both in the presence and absence of light. The cell death is apoptotic in nature and triggered by the photogeneration of reactive oxygen species. Fluorescence imaging experiments on HeLa cells reveals that complex 6 accumulated primarily inside the mitochondria. Human serum albumin (HSA) binding experiments show that the complexes bind HSA with good affinity, but 6 binds with the highest affinity, with a K-b value of 9.8 x 10(5) M-1. Thus, complex 6 with its negligible toxicity in the dark and in normal cells but remarkable toxicity in visible light holds significant photochemotherapeutic potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ternary iron(III) complexes (FeL(B)] (1-3) of a trianionic tetradentate phenolate-based ligand (L) and henanthroline base (B), namely, 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), have been prepared and structurally characterized and their DNA binding, cleavage, and photocytotoxic properties studied. The complexes with a FeN3O3 core show the Fe(III)/Fe(II) redox couple near -0.6 V in DMF, a magnetic moment value of similar to 5.9 mu(B), and a binding propensity to both calf thymus DNA and bovine serum albumin (BSA) protein. They exhibit red-light-induced DNA cleavage activity following a metal-assisted photoredox pathway forming HO center dot radicals but do not show any photocleavage of BSA in UV-A light. Complex 3 displays photocytotoxicity in the human cervical cancer cell line (HeLa) and human keratinocyte cell line (HaCaT) with respective IC50 values of 3.59 mu M and 6.07 mu M in visible light and 251 nM and 751 nM in UV-A light of 365 nm. No significant cytotoxicity is observed in the dark. The photoexposed HeLa cells, treated prior with complex 3, have shown marked changes in nuclear morphology as demonstrated by Hoechst 33258 nuclear stain. Generation of reactive oxygen species has been evidenced from the fluorescence enhancement of dichlorofluorescein upon treatment with 3 followed by photoexposure. Nuclear chromatin cleavage has been observed in acridine orange/ethidium bromide dual staining of treated HeLa cells and from alkaline single-cell gel electrophoresis. Caspase 3/7 activity in HeLa cells has been found to be upregulated by only 4 fold after photoirradiation, signifying the fact that cell death through a caspase 3/7 dependent pathway may not be solely operative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pristine and long-chain functionalized single-walled carbon nanotubes (SWNTs) were incorporated successfully in supramolecular organogels formed by an all-trans tri(p-phenylenevinylene) bis-aldoxime to give rise to new nanocomposites with interesting mechanical, thermal and electrical properties. Variable-temperature UV-vis and fluorescence spectra reveal both pristine and functionalized SWNTs promote aggregation of the gelator molecules and result in quenching of the UV-vis and fluorescence intensity. Electron microscopy and confocal microscopy show the existence of a densely packed and directionally aligned fibrous network in the resulting nanocomposites. Differential scanning calorimetry (DSC) of the composites shows that incorporation of SWNTs increases the gel formation temperature. The DSC of the xerogels of 1-SWNT composites indicates formation of different thermotropic mesophases which is also evident from polarized optical microscopy. The reinforced aggregation of the gelators on SWNT doping was reflected in the mechanical properties of the composites. Rheology of the composites demonstrates the formation of a rigid and viscoelastic solid-like assembly on SWNT incorporation. The composites from gel-SWNTs were found to be semiconducting in nature and showed enhanced electrical conductivity compared to that of the native organogel. Upon irradiation with a near IR laser at 1064 nm for 5 min it was possible to selectively induce a gel-to-sol phase transition of the nanocomposites, while irradiation for even 30 min of the native organogel under identical conditions did not cause any gel-to-sol conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anatase phase of titania (TiO2) nano-photocatalysts was prepared using a modified sol gel process and thereafter embedded on carbon-covered alumina supports. The carbon-covered alumina (CCA) supports were prepared via the adsorption of toluene 2,4-diisocyanate (TDI) on the surface of the alumina. TDI was used as the carbon source for the first time for the carbon-covered alumina support system. The adsorption of TDI on alumina is irreversible; hence, the resulting organic moiety can undergo pyrolysis at high temperatures resulting in the formation of a carbon coating on the surface of the alumina. The TiO2 catalysts were impregnated on the CCA supports. X-ray diffraction analysis indicated that the carbon deposited on the alumina was not crystalline and also showed the successful impregnation of TiO2 on the CCA supports. In the Raman spectra, it could be deduced that the carbon was rather a conjugated olefinic or polycyclic hydrocarbons which can be considered as molecular units of a graphitic plane. The Raman analysis of the catalysed CCAs showed the presence of both the anatase titania and D and G band associated with the carbon of the CCAs. The scanning electron microscope micrographs indicated that the alumina was coated by a carbon layer and the energy dispersive X-ray spectra showed the presence of Al, O and C in the CCA samples, with the addition of Ti for the catalyst impregnated supports. The Brunauer Emmet and Teller surface area analysis showed that the incorporating of carbon on the alumina surface resulted in an increase in surface area, while the impregnation with TiO2 resulted in a further increase in surface area. However, a decrease in the pore volume and diameter was observed. The photocatalytic activity of the nanocatalysts was studied for the degradation of Rhodamine B dye. The CCA-TiO2 nanocatalysts were found to be more photocatalytically active under both visible and UV light irradiation compared to the free TIO2 nanocatalysts.