30 resultados para Nautiloidea, Fossil
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new method of calculating the calorific values of fossil fuels from their chemical composition has been developed, based on the concept that heats of reaction of stoichiometric fuel-oxidizer systems are rectilinearly related with the total oxidizing or reducing valancies of the mixture. The calorific value of fossil fuels has been shown to be directly related to the net reducing valencies of the fuel. The proposed method is simple and compares favourably with the other prominent methods reported in the literature.
Resumo:
Food industries like biscuit and confectionary use significant amount of fossil fuel for thermal energy. Biscuit manufacturing in India is carried out both by organized and unorganized sector. The ratio of organized to unorganized sector is 60 : 40 (1). The total biscuit manufacturing in the organized sector India in 2008 was about 1.7 million metric tons (1). Accounting for the unorganized sector in India, the total biscuit manufacturing would have been about 2.9 million metric tons/annum. A typical biscuit baking is carried in a long tunnel kiln with varying temperature in different zones. Generally diesel is used to provide the necessary heat energy for the baking purpose, with temperature ranging from 190 C in the drying zone to about 300 C in the baking area and has to maintain in the temperature range of +/- 5 C. Typical oil consumption is about 40 litres per ton of biscuit production. The paper discusses the experience in substituting about 120 lts per hour kiln for manufacturing about 70 tons of biscuit daily. The system configuration consists of a 500 kg/hr gasification system comprising of a reactor, multicyclone, water scrubbers, and two blowers for maintaining the constant gas pressure in the header before the burners. Cold producer gas is piped to the oven located about 200 meters away from the gasifier. Fuel used in the gasification system is coconut shells. All the control system existing on the diesel burner has been suitably adapted for producer gas operation to maintain the total flow, A/F control so as to maintain the temperature. A total of 7 burners are used in different zones. Over 17000 hour of operation has resulted in replacing over 1800 tons of diesel over the last 30 months. The system operates for over 6 days a week with average operational hours of 160. It has been found that on an average 3.5 kg of biomass has replaced one liter of diesel.
Resumo:
One-quarter of the total primary production on earth is contributed by diatoms1. These are photosynthetic, unicellular algae with ornamented silica shells found in all aquatic and moist environments. They form the base of energy-efficient food webs that support all aquatic life forms. More than 250 genera of living diatoms, with as many as 100,000 species are known2. Fossil diatoms are known as early as the Cretaceous, 144–65 m.y. ago3. In India, deposits of diatoms occur in Rajasthan and are known as ‘multani mitti’. Multani mitti or Indian Fuller’s earth or diatomaceous earth as it is called in the West, is applied as a paste on the surface of the skin for 15–20 min and then washed-off. This leaves the skin feeling smooth, soft, moist and rejuvenated. Diatomaceous earth is now being used in the formulation of soaps, cleansing products, face powders and skincare preparations. Diatomaceous earth is a mineral material consisting mainly of siliceous fragments of various species of fossilized remains of diatoms.
Resumo:
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.
Resumo:
A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980-1981 to 2003-2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, N-x, N2O, SO2, PM and HC) using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg Of CO2, of which 94.5% was contributed by road transport (2003-2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) Of CO2, followed by Tamil Nadu 26.41 Tg(10.8%), Gujarat 23.31 Tg(9.6%), Uttar Pradesh 17.42 Tg(7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.
Resumo:
Obtaining drinking water from seawater is usually done through the process of desalination. The conventional desalination processes at present are centralized, require huge capital cost, and enormous amount of concentrated energy from fossil fuel. Issues like optimal chamber pressure, pressure control and energy savings for desalination are not adequately addressed. This paper proposes a novel pressure control method by means of dynamic pressure modulation within the evaporation chamber. A performance index is proposed that results in a dynamic optimal external pressure and maximum energy saving for a specific flow rate. Experimental results from the laboratory setup that validate the proposed concepts are presented in the paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This case study has been carried out as a comparison between two different land-use strategies for climate change mitigation, with possible application within the Clean Development Mechanisms. The benefits of afforestation for carbon sequestration versus for bioenergy production are compared in the context of development planning to meet increasing domestic and agricultural demand for electricity in Hosahalli village, Karnataka, India. One option is to increase the local biomass based electricity generation, requiring an increased biomass plantation area. This option is compared with fossil based electricity generation where the area is instead used for producing wood for non-energy purposes while also sequestering carbon in the soil and standing biomass. The different options have been assessed using the PRO-COMAP model. The ranking of the different options varies depending on the system boundaries and time period. Results indicate that, in the short term (30 years) perspective, the mitigation potential of the long rotation plantation is largest, followed by the short rotation plantation delivering wood for energy. The bioenergy option is however preferred if a long-term view is taken. Short rotation forests delivering wood for short-lived non-energy products have the smallest mitigation potential, unless a large share of the wood products are used for energy purposes (replacing fossil fuels) after having served their initial purpose. If managed in a sustainable manner all of these strategies can contribute to the improvement of the social and environmental situation of the local community. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The basic principles of operation of gas sensors based on solid-state galvanic cells are described. The polarisation of the electrodes can be minimised by the use of point electrodes made of the solid electrolyte, the use of a reference system with chemical potential close to that of the sample system and the use of graded condensed phase reference electrodes. Factors affecting the speed of response of galvanic sensors in equilibrium and non-equilibrium gas mixtures are considered with reference to products of combustion of fossil fuels. An expression for the emf of non-isothermal galvanic sensors and the criterion for the design of temperature compensated reference electrodes for non-isothermal galvanic sensors are briefly outlined. Non-isothermal sensors are useful for the continuous monitoring of concentrations or chemical potentials in reactive systems at high temperatures. Sensors for oxygen, carbon, and alloying elements (Zn and Si) in liquid metals and alloys are discussed. The use of auxiliary electrodes permits the detection of chemical species in the gas phase which are not mobile in the solid electrolyte. Finally, the cause of common errors in galvanic measurements, and tests for correct functioning of galvanic sensors are given. 60 ref.--AA
Resumo:
Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the ?13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in ?13C values of collagen in sub-adult (range -10.5� to-22.7�, variance=14.51) compared to adult animals (range -16.0� to -20.3�, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.
Resumo:
Road transportation, as an important requirement of modern society, is presently hindered by restrictions in emission legislations as well as the availability of petroleum fuels, and as a consequence, the fuel cost. For nearly 270 years, we burned our fossil cache and have come to within a generation of exhausting the liquid part of it. Besides, to reduce the greenhouse gases, and to obey the environmental laws of most countries, it would be necessary to replace a significant number of the petroleum-fueled internal-combustion-engine vehicles (ICEVs) with electric cars in the near future. In this article, we briefly describe the merits and demerits of various proposed electrochemical systems for electric cars, namely the storage batteries, fuel cells and electrochemical supercapacitors, and determine the power and energy requirements of a modern car. We conclude that a viable electric car could be operated with a 50 kW polymer-electrolyte fuel cell stack to provide power for cruising and climbing, coupled in parallel with a 30 kW supercapacitor and/or battery bank to deliver additional short-term burst-power during acceleration.
Resumo:
This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.
Resumo:
Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.
Resumo:
A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980–1981 to 2003–2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, NOx, N2O, SO2, PM and HC), using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg of CO2, of which 94.5% was contributed by road transport (2003–2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) of CO2, followed by Tamil Nadu 26.41 Tg (10.8%), Gujarat 23.31 Tg (9.6%), Uttar Pradesh 17.42 Tg (7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The paper explores the biomass based power generation potential of Africa. Access to electricity in sub-Saharan Africa (SSA) is about 26% and falls to less than 1% in the rural areas. On the basis of the agricultural and forest produce of this region, the residues generated after processing are estimated for all the countries. The paper also addresses the use of gasification technology - an efficient thermo-chemical process for distributed power generation - either to replace fossil fuel in an existing diesel engine based power generation system or to generate electricity using a gas engine. This approach enables the implementation of electrification programs in the rural sector and gives access to grid quality power. This study estimates power generation potential at about 5000 MW and 10,000 MW by using 30% of residues generated during agro processing and 10% of forest residues from the wood processing industry, respectively. A power generation potential of 15000 MW could generate 100 terawatt-hours (TWh), about 15% of current generation in SSA. The paper also summarizes some of the experience in using the biomass gasification technology for power generation in Africa and India. The paper also highlights the techno economics and key barriers to promotion of biomass energy in sub-Saharan Africa. (C) 2011 International Energy Initiative. Published by Elsevier Inc. All rights reserved.