281 resultados para Nature inspired algorithms
em Indian Institute of Science - Bangalore - Índia
Resumo:
The design optimization of laminated composites using naturally inspired optimization techniques such as vector evaluated particle swarm optimization (VEPSO) and genetic algorithms (GA) are used in this paper. The design optimization of minimum weight of the laminated composite is evaluated using different failure criteria. The failure criteria considered are maximum stress (MS), Tsai-Wu (TW) and failure mechanism based (FMB) failure criteria. Minimum weight of the laminates are obtained for different failure criteria using VEPSO and GA for different combinations of loading. From the study it is evident that VEPSO and GA predict almost the same minimum weight of the laminate for the given loading. Comparison of minimum weight of the laminates by different failure criteria differ for some loading combinations. The comparison shows that FMBFC provide better results for all combinations of loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.
Resumo:
An efficient location service is a prerequisite to any robust, effective and precise location information aided Mobile Ad Hoc Network (MANET) routing protocol. Locant, presented in this paper is a nature inspired location service which derives inspiration from the insect colony framework, and it is designed to work with a host of location information aided MANET routing protocols. Using an extensive set of simulation experiments, we have compared the performance of Locant with RLS, SLS and DLS, and found that it has comparable or better performance compared to the above three location services on most metrics and has the least overhead in terms of number of bytes transmitted per location query answered.
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
In this paper, a comparative study is carried using three nature-inspired algorithms namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) on clustering problem. Cuckoo search is used with levy flight. The heavy-tail property of levy flight is exploited here. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results are tabulated and analysed using various techniques. Finally we conclude that under the given set of parameters, cuckoo search works efficiently for majority of the dataset and levy flight plays an important role.
Resumo:
In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.
Resumo:
Remote sensing provides a lucid and effective means for crop coverage identification. Crop coverage identification is a very important technique, as it provides vital information on the type and extent of crop cultivated in a particular area. This information has immense potential in the planning for further cultivation activities and for optimal usage of the available fertile land. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Further, image classification forms the core of the solution to the crop coverage identification problem. No single classifier can prove to satisfactorily classify all the basic crop cover mapping problems of a cultivated region. We present in this paper the experimental results of multiple classification techniques for the problem of crop cover mapping of a cultivated region. A detailed comparison of the algorithms inspired by social behaviour of insects and conventional statistical method for crop classification is presented in this paper. These include the Maximum Likelihood Classifier (MLC), Particle Swarm Optimisation (PSO) and Ant Colony Optimisation (ACO) techniques. The high resolution satellite image has been used for the experiments.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
We present the theoretical foundations for the multiple rendezvous problem involving design of local control strategies that enable groups of visibility-limited mobile agents to split into subgroups, exhibit simultaneous taxis behavior towards, and eventually rendezvous at, multiple unknown locations of interest. The theoretical results are proved under certain restricted set of assumptions. The algorithm used to solve the above problem is based on a glowworm swarm optimization (GSO) technique, developed earlier, that finds multiple optima of multimodal objective functions. The significant difference between our work and most earlier approaches to agreement problems is the use of a virtual local-decision domain by the agents in order to compute their movements. The range of the virtual domain is adaptive in nature and is bounded above by the maximum sensor/visibility range of the agent. We introduce a new decision domain update rule that enhances the rate of convergence by a factor of approximately two. We use some illustrative simulations to support the algorithmic correctness and theoretical findings of the paper.
Resumo:
This paper presents a glowworm metaphor based distributed algorithm that enables a collection of minimalist mobile robots to split into subgroups, exhibit simultaneous taxis-behavior towards, and rendezvous at multiple radiation sources such as nuclear/hazardous chemical spills and fire-origins in a fire calamity. The algorithm is based on a glowworm swarm optimization (GSO) technique that finds multiple optima of multimodal functions. The algorithm is in the same spirit as the ant-colony optimization (ACO) algorithms, but with several significant differences. The agents in the glowworm algorithm carry a luminescence quantity called luciferin along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luciferin. The key feature that is responsible for the working of the algorithm is the use of an adaptive local-decision domain, which we use effectively to detect the multiple source locations of interest. The glowworms have a finite sensor range which defines a hard limit on the local-decision domain used to compute their movements. Extensive simulations validate the feasibility of applying the glowworm algorithm to the problem of multiple source localization. We build four wheeled robots called glowworms to conduct our experiments. We use a preliminary experiment to demonstrate the basic behavioral primitives that enable each glowworm to exhibit taxis behavior towards source locations and later demonstrate a sound localization task using a set of four glowworms.