81 resultados para Nature and Poetry
em Indian Institute of Science - Bangalore - Índia
Resumo:
One influential image that is popular among scientists is the view that mathematics is the language of nature. The present article discusses another possible way to approach the relation between mathematics and nature, which is by using the idea of information and the conceptual vocabulary of cryptography. This approach allows us to understand the possibility that secrets of nature need not be written in mathematics and yet mathematics is necessary as a cryptographic key to unlock these secrets. Various advantages of such a view are described in this article.
Resumo:
Further purification of indoleacetaldoxime (IAOX) hydro-lyase from Gibberella fujikuroi by DEAE-cellulose chromatography is described. The purified enzyme was activated by dehydroascorbic acid (DHA), ascorbic acid (AA), and pyridoxal phosphate (PALP) and was inhibited by thiol compounds and thiol reagents including phenylthiocyanate. Ferrous ions but not ferric ions activated the purified enzyme. The enzyme was activated by dihydrofolic acid but inhibited by tetrahydrofolic acid. Phenylacetaldoxime, a competitive inhibitor, afforded partial protection of the enzyme from the action of N-ethylmaleimide suggesting the involvement of a thiol function at the active site or substrate-binding site. The inhibition of the enzyme by 2,3-dimercaptopropanol was reversed by DHA, PALP, or frozen storage. KCN inhibition of the enzyme was reversed by PALP. NaBH4 reduction of the purified enzyme in the presence of PALP gave an active enzyme which was further activated by PALP or DHA but not by ferrous ions. These results suggested a "structural" role for PALP in the activity of IAOX hydro-lyase. Dilute solutions of the purified enzyme, obtained during DEAE-cellulose chromatography and concentrated using sucrose, showed enhanced activity upon frozen storage and thawing. The increase in activity of the enzyme during certain culture conditions, the activation and inhibition of the enzyme by several unrelated compounds, and the effect of freezing indicate that IAOX hydro-lyase is probably a metabolically regulated enzyme with a structure composed of subunits.
Resumo:
Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mossbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.
Resumo:
Structural and electronic properties of C-H center dot center dot center dot O contacts in compounds containing a formyl group are investigated from the perspective of both hydrogen bonding and dipole-dipole interactions, in a systematic and graded approach. The effects of a-substitution and self-association on the nature of the formyl H-atom are studied with the NBO and AIM methodologies. The relative dipole-dipole contributions in formyl C-H center dot center dot center dot O interactions are obtained for aldehyde dimers. The stabilities and energies of aldehyde clusters (dimer through octamer) have been examined computationally. Such studies have an implication in crystallization mechanisms. Experimental X-ray crystal structures of formaldehyde, acrolein and N-methylformamide have been determined in order to ascertain the role of C-H center dot center dot center dot O interactions in the crystal packing of formyl compounds.
Resumo:
Fe-Cr/Al2O3 metal-ceramic composites prepared by hydrogen reduction at different temperatures and for different periods have been investigated by a combined use of Mössbauer spectroscopy, x-ray diffraction, transmission electron microscopy, and energy-dispersive x-ray spectroscopy in order to obtain information on the nature of the metallic species formed. Total reduction of Fe3+ does not occur by increasing the reduction time at 1320 K from 1 to 30 h, and the amount of superparamagnetic metallic species is essentially constant (about 10%). Temperatures higher than 1470 K are needed to achieve nearly total reduction of substitutional Fe3+. Interestingly, iron favors the reduction of chromium. The composition of the Fe-Cr particles is strongly dependent on their size, the Cr content being higher in particles smaller than 10 nm.
Resumo:
We generalize the Nozieres-Schmitt-Rink method to study the repulsive Fermi gas in the absence of molecule formation, i.e., in the so-called ``upper branch.'' We find that the system remains stable except close to resonance at sufficiently low temperatures. With increasing scattering length, the energy density of the system attains a maximum at a positive scattering length before resonance. This is shown to arise from Pauli blocking which causes the bound states of fermion pairs of different momenta to disappear at different scattering lengths. At the point of maximum energy, the compressibility of the system is substantially reduced, leading to a sizable uniform density core in a trapped gas. The change in spin susceptibility with increasing scattering length is moderate and does not indicate any magnetic instability. These features should also manifest in Fermi gases with unequal masses and/or spin populations.
Resumo:
Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 degrees C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 degrees C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.
Resumo:
Uroporphyrinogen decarboxylase (UROD) is a key enzyme in the heme-biosynthetic pathway and in Plasmodium falciparum it occupies a strategic position in the proposed hybrid pathway for heme biosynthesis involving shuttling of intermediates between different subcellular compartments in the parasite. In the present study, we demonstrate that an N-terminally truncated recombinant P. falciparum UROD (r(Δ)PfUROD) over-expressed and purified from Escherichia coli cells, as well as the native enzyme from the parasite were catalytically less efficient compared with the host enzyme, although they were similar in other enzyme parameters. Molecular modeling of PfUROD based on the known crystal structure of the human enzyme indicated that the protein manifests a distorted triose phosphate isomerase (TIM) barrel fold which is conserved in all the known structures of UROD. The parasite enzyme shares all the conserved or invariant amino acid residues at the active and substrate binding sites, but is rich in lysine residues compared with the host enzyme. Mutation of specific lysine residues corresponding to residues at the dimer interface in human UROD enhanced the catalytic efficiency of the enzyme and dimer stability indicating that the lysine rich nature and weak dimer interface of the wild-type PfUROD could be responsible for its low catalytic efficiency. PfUROD was localised to the apicoplast, indicating the requirement of additional mechanisms for transport of the product coproporphyrinogen to other subcellular sites for its further conversion and ultimate heme formation.
Resumo:
A number of studies in yeast have shown that DNA topoisomerase TI is essential for chromosome condensation and disjunction during mitosis at the metaphase/anaphase transition and meiosis I. Accordingly, kinetic and mechanistic studies have implied a role for topoisomerase rr in chromosome disjunction. As a step toward understanding the nature and role of topoisomerase II in a mammalian germline in vivo, we have purified topoisomerase II from rat testis to homogeneity and ascertained several of its catalytic activities in conjunction with that of the purified enzyme from liver. The purified enzymes appeared to be monomers under denaturing conditions; however, they differed in their relative molecular mass. Topoisomerase II from testis and liver have apparent molecular masses of 150 +/- 10 kDa and 160 +/- 10 kDa, respectively. The native molecular mass of testis topoisomerase II as assayed by immunoblot analysis of cell-foe extracts, prepared in the presence of SDS and a number of protease inhibitors, corroborated with the size of the purified enzyme. Both enzymes are able to promote decatenation and relax supercoiled DNA substrates in an ATP and Mg2+-dependent manner. However, quantitative comparison of catalytic properties of topoisomerase II from testis with that of the enzyme from liver displayed significant differences in their efficiencies. Optimal pH values for testis enzyme are 6.5 to 8.5 while they are 6 to 7.5 for the liver enzyme. Intriguingly, the relaxation activity of liver topoisomerase II was inhibited by potassium glutamate at 1 M, whereas testis enzyme required about half its concentration. These findings argue that topoisomerase II from rat testis is structurally distinct from that of its somatic form and the functional differences between the two enzymes parallels with the physiological environment that is unique to these two tissues.
Resumo:
We have investigated structural transitions in Poly(dG-dC) and Poly(dG-Me5dC) in order to understand the exact role of cations in stabilizing left-handed helical structures in specific sequences andthe biological role, if any, of these structures. From a novel temperature dependent transition it has been shown that a minor fluctuation in Na+ concentration at ambient temperature can bring about Β to Ζ transition. Forthe first time, wehave observed a novel double transition in poly(dG-Me5dC) as the Na+ concentration is gradually increased. This suggests that a minor fluctuation in Na+ concentration in conjunction with methylation may transform small stretches of CG sequences from one conformational state to another. These stretches could probably serve as sites for regulation. Supercoiled formV DNA reconstituted from pBR322 and pßG plasmids have been studied as model systems, in order to understand the nature and role of left-handed helical conformation in natural sequences. A large portion of DNA in form V, obtained by reannealing the two complementary singlestranded circles is forced to adopt left-handed double helical structure due to topological constraints (Lk = 0). Binding studies with Z-DNA specific antibody and spectroscopic studies confirm the presence of left-handed Z-structure in the pßG and pßR322 form V DNA. Cobalt hexamine chloride, which induces Z-form in Poly(dG-dC) stabilizes the Z-conformation in form V DNA even in the non-alternating purine-pyrimidine sequences. A reverse effect is observed with ethidium bromide. Interestingly, both topoisomerase I and II (from wheat germ) act effectively on form V DNA to give rise to a species having an electrophoretic mobility on agarose gel similar to that of open circular (form II) DNA. Whether this molecule is formed as a result of the left-handed helical segments of form V DNA undergoing a transition to the right-handed B-form during the topoisomerase action remains to be solved.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.
Resumo:
A new form of L-histidine L-aspartate monohydrate crystallizes in space group P22 witha = 5.131(1),b = 6.881(1),c= 18.277(2) Å,β= 97.26(1)° and Z = 2. The structure has been solved by the direct methods and refined to anR value of 0.044 for 1377 observed reflections. Both the amino acid molecules in the complex assume the energetically least favourable allowed conformation with the side chains staggered between the α-amino and α-scarboxylate groups. This results in characteristic distortions in some bond angles. The unlike molecules aggregate into alternating double layers with water molecules sandwiched between the two layers in the aspartate double layer. The molecules in each layer are arranged in a head-to-tail fashion. The aggregation pattern in the complex is fundamentally similar to that in other binary complexes involving commonly occurring L amino acids, although the molecules aggregate into single layers in them. The distribution of crystallographic (and local) symmetry elements in the old form of the complex is very different from that in the new form. So is the conformation of half the histidine molecules. Yet, the basic features of molecular aggregation, particularly the nature and the orientation of head-to-tail sequences, remain the same in both the forms. This supports the thesis that the characteristic aggregation patterns observed in crystal structures represent an intrinsic property of amino acid aggregation.
Resumo:
A systematic study was undertaken on the combustion and thermal decomposition of pelletized Ammonium Perchlorate (AP) to investigate the effects of pelletizing pressure and dwell time. At constant pressure, increasing the dwell time results in an increase in the burning rate up to a maximum and thereafter decreases it. The dwell time required for the pellets to have maximum burning rate is a function of pressure. The maximum burning rate is the same for all the pressures used and is also unaffected by increasing, to the range 90-250 μ, the particle size of AP used. In order to explain the occurrence of a maximum in burning rate, pellets were examined for their thermal sensitivities, physical nature and the changes occurring during pelletization with dwell time and pressure. The variations are argued in terms of increasing density, formation of defects such as dislocations leading to an increase in the number of reactive sites, followed by their partial annihilation at longer dwell times due to flow of material during pelletization.