5 resultados para National Ocean Survey. Office of Program Development and Management
em Indian Institute of Science - Bangalore - Índia
Resumo:
Climate change impact on a groundwater-dependent small urban town has been investigated in the semiarid hard rock aquifer in southern India. A distributed groundwater model was used to simulate the groundwater levels in the study region for the projected future rainfall (2012-32) obtained from a general circulation model (GCM) to estimate the impacts of climate change and management practices on groundwater system. Management practices were based on the human-induced changes on the urban infrastructure such as reduced recharge from the lakes, reduced recharge from water and wastewater utility due to an operational and functioning underground drainage system, and additional water extracted by the water utility for domestic purposes. An assessment of impacts on the groundwater levels was carried out by calibrating a groundwater model using comprehensive data gathered during the period 2008-11 and then simulating the future groundwater level changes using rainfall from six GCMs Institute of Numerical Mathematics Coupled Model, version 3.0 (INM-CM. 3.0); L'Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4); Model for Interdisciplinary Research on Climate, version 3.2 (MIROC3.2); ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G); Hadley Centre Coupled Model, version 3 (HadCM3); and Hadley Centre Global Environment Model, version 1 (HadGEM1)] that were found to show good correlation to the historical rainfall in the study area. The model results for the present condition indicate that the annual average discharge (sum of pumping and natural groundwater outflow) was marginally or moderately higher at various locations than the recharge and further the recharge is aided from the recharge from the lakes. Model simulations showed that groundwater levels were vulnerable to the GCM rainfall and a scenario of moderate reduction in recharge from lakes. Hence, it is important to sustain the induced recharge from lakes by ensuring that sufficient runoff water flows to these lakes.
Resumo:
AimBiodiversity outcomes under global change will be influenced by a range of ecological processes, and these processes are increasingly being considered in models of biodiversity change. However, the level of model complexity required to adequately account for important ecological processes often remains unclear. Here we assess how considering realistically complex frugivore-mediated seed dispersal influences the projected climate change outcomes for plant diversity in the Australian Wet Tropics (all 4313 species). LocationThe Australian Wet Tropics, Queensland, Australia. MethodsWe applied a metacommunity model (M-SET) to project biodiversity outcomes using seed dispersal models that varied in complexity, combined with alternative climate change scenarios and habitat restoration scenarios. ResultsWe found that the complexity of the dispersal model had a larger effect on projected biodiversity outcomes than did dramatically different climate change scenarios. Applying a simple dispersal model that ignored spatial, temporal and taxonomic variation due to frugivore-mediated seed dispersal underestimated the reduction in the area of occurrence of plant species under climate change and overestimated the loss of diversity in fragmented tropical forest remnants. The complexity of the dispersal model also changed the habitat restoration approach identified as the best for promoting persistence of biodiversity under climate change. Main conclusionsThe consideration of complex processes such as frugivore-mediated seed dispersal can make an important difference in how we understand and respond to the influence of climate change on biodiversity.
Resumo:
Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. This paper addresses these challenges. Historically, the responsibility for greenhouse gas emissions' increase lies largely with the industrialized world, though the developing countries are likely to be the source of an increasing proportion of future emissions. The projected climate change under various scenarios is likely to have implications on food production, water supply, coastal settlements, forest ecosystems, health, energy security, etc. The adaptive capacity of communities likely to be impacted by climate change is low in developing countries. The efforts made by the UNFCCC and the Kyoto Protocol provisions are clearly inadequate to address the climate change challenge. The most effective way to address climate change is to adopt a sustainable development pathway by shifting to environmentally sustainable technologies and promotion of energy efficiency, renewable energy, forest conservation, reforestation, water conservation, etc. The issue of highest importance to developing countries is reducing the vulnerability of their natural and socio-economic systems to the projected climate change. India and other developing countries will face the challenge of promoting mitigation and adaptation strategies, bearing the cost of such an effort, and its implications for economic development.
Resumo:
Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001-10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies.