18 resultados para National Film and Sound Archive of Australia

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous measurements of thickness and temperature profile of the lubricant film at chip-tool interface during machining have been studied in this experimental programme. Conventional techniques such as thermography can only provide temperature measurement under controlled environment in a laboratory and without the addition of lubricant. The present study builds on the capabilities of luminescent sensors in addition to direct image based observations of the chip-tool interface. A suite of experiments conducted using different types of sensors are reported in this paper, especially noteworthy are concomitant measures of thickness and temperature of the lubricant. (C) 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the essential features of piston rings in the cylinder liner of an internal combustion engine reveals that the lubrication problem posed by it is basically that of a slider bearing. According to steady-flow-hydrodynamics, viz. Image the oil film thickness becomes zero at the dead centre positions as the velocity, U = 0. In practice, however, such a phenomenon cannot be supported by consideration of the wear rates of pistion rings and cylinder liners. This can be explained by including the “squeeze” action term in the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in optical band gap (photo bleaching) due to light illumination was studied at room temperature as well as at low (4.2 K) temperature for Sb/As2S3 multilayered film of 640 nm thickness by Fourier Transform Infrared Technique. The interdiffusion of Sb into As2S3 matrix results the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap (E-g), absorption coefficient (alpha), Tauc parameter (B-1/2), Urbach edge (E-e). At the same time, photo darkening phenomena was observed in (As2S3)(0.93)Sb-0.07 film of same thickness both at low and room temperatures. From our X-ray Photoelectron Spectroscopy measurements,we are able to show that some of the As-As, S-S and Sb-Sb bonds are converted into As-S and S-Sb bonds in case of multilayers. We found that the energetically favoured heteropolar bond formation take place by a phonon-assisted mechanism using the lone pair pi electrons of S-2(0). But in case of (As2S3)(0.93)Sb-0.02 film, the homopolar bonds are playing a major role. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil phase, in an oil-in-water emulsion on a steel substrate, is strongly repelled by the substrate. The oil in this situation does not wet the steel and steel/steel friction is high. In this work we disperse anionic surfactants in an oil film and study the effect of this dispersion on the force of interaction between a silica colloid probe (AFM) carrying the oil film and a steel substrate in water. It is observed that when the surfactant is oil insoluble and the interaction time is short the strong entropic repulsion (without the surfactant) is replaced by a strong attraction. The steel on steel sliding friction in this case is low compared to that what is achieved when the surfactant is soluble in oil. The rationale underlying these interactions is explored here. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two donor acceptor diketopyrrolopyrrole (DPP)-based copolymers (PDPP-BBT and TDPP-BBT) have been synthesized for their application in organic devices such as metal-insulator semiconductor (MIS) diodes and field-effect transistors (FETs). The semiconductor-dielectric interface was characterized by capacitance-voltage and conductance-voltage methods. These measurements yield an interface trap density of 4.2 x 10(12) eV(-1) cm(-2) in TDPP-BBT and 3.5 x 10(12) eV(-1) cm(-2) in PDPP-BBT at the flat-band voltage. The FETs based on these spincoated DPP copolymers display p-channel behavior with hole mobilities of the order 10(-3) cm(2)/(V s). Light scattering studies from PDPP-BBT FETs show almost no change in the Raman spectrum after the devices are allowed to operate at a gate voltage, indicating that the FETs suffer minimal damage due to the metal-polymer contact or the application of an electric field. As a comparison Raman intensity profile from the channel-Au contact layer in pentacene FETs are presented, which show a distinct change before and after biasing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the after shock heated structural and morphological studies of chromium film coated on hypersonic test model as a passive drag reduction element. The structural changes and the composition of phases of chromium due to shock heating (2850 K) are characterized using X-ray diffraction studies. Surface morphology changes of chromium coating have been studied using scanning electron microscopy (SEM) before and after shock heating. Significant amount of chromium ablation and sublimation from the model surface is noticed from SEM micrographs. Traces of randomly oriented chromium oxides formed along the coated surface confirm surface reaction of chromium with oxygen present behind the shock. Large traces of amorphous chromium oxide phases are also observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development towards the combination of miniaturization and improved functionality of RFIC has been stalled due to the lack of high-performance integrated inductors. To meet this challenge, integration of magnetic material with high permeability as well as low conductivity is a must. Ferrite films are excellent candidates for RF devices due to their low cost, high resistivity, and low eddy current losses. Unlike its bulk counterpart, nanocrystalline zinc ferrite, because of partial inversion in the spinel structure, exhibits novel magnetic properties suitable for RF applications. However, most scalable ferrite film deposition processes require either high temperature or expensive equipment or both. We report a novel low temperature (< 200 degrees C) solution-based deposition process for obtaining high quality, polycrystalline zinc ferrite thin films (ZFTF) on Si (100) and on CMOS-foundry-fabricated spiral inductor structures, rapidly, using safe solvents and precursors. An enhancement of up to 20% at 5 GHz in the inductance of a fabricated device was achieved due to the deposited ZFTF. Substantial inductance enhancement requires sufficiently thick films and our reported process is capable of depositing smooth, uniform films as thick as similar to 20 mu m just by altering the solution composition. The method is capable of depositing film conformally on a surface with complex geometry. As it requires neither a vacuum system nor any post-deposition processing, the method reported here has a low thermal budget, making it compatible with modern CMOS process flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports analytical modeling, simulation and experimental validation for switching and release times of an electrostatically actuated micromachined switch. Presented work is an extension of our earlier work [1] that analytically argued, and numerically and experimentally demonstrated, why pull-in time is larger that pull-up time when the actuation voltage is less than twice of the pull-in voltage. In this paper, switching dynamics is investigated under the influence of squeeze-film damping. Tests were performed on SOI (silicon-on-insulator) based parallel beams structures.Typical voltage requirement for actuation is in the range of 10-30 V. All the experiments were performed in normal atmospheric pressure. Measurement results confirm that the quality factor Q has appreciable effect on the release time compared to the switching time. The quality factor Q is extracted from the response measurement and compared with the ANSYS simulation result. In addition, the dynamic pull-in effect has also been studied and reported in this paper. A contribution of this work includes the effect of various phenomena such as squeeze-film damping, dynamic pull-in, and frequency pull-in effects on the switching dynamics of a MEMS switch.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.