5 resultados para Natchez, Miss. Laurel Hill.

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial information at the landscape scale is extremely important for conservation planning, especially in the case of long-ranging vertebrates. The biodiversity-rich Anamalai hill ranges in the Western Ghats of southern India hold a viable population for the long-term conservation of the Asian elephant. Through rapid but extensive field surveys we mapped elephant habitat, corridors, vegetation and land-use patterns, estimated the elephant population density and structure, and assessed elephant-human conflict across this landscape. GIS and remote sensing analyses indicate that elephants are distributed among three blocks over a total area of about 4600 km(2). Approximately 92% remains contiguous because of four corridors; however, under 4000 km2 of this area may be effectively used by elephants. Nine landscape elements were identified, including five natural vegetation types, of which tropical moist deciduous forest is dominant. Population density assessed through the dung count method using line transects covering 275 km of walk across the effective elephant habitat of the landscape yielded a mean density of 1.1 (95% Cl = 0.99-1.2) elephant/km(2). Population structure from direct sighting of elephants showed that adult male elephants constitute just 2.9% and adult females 42.3% of the population with the rest being subadults (27.4%), juveniles (16%) and calves (11.4%). Sex ratios show an increasing skew toward females from juvenile (1:1.8) to sub-adult (1:2.4) and adult (1:14.7) indicating higher mortality of sub-adult and adult males that is most likely due to historical poaching for ivory. A rapid questionnaire survey and secondary data on elephant-human conflict from forest department records reveals that villages in and around the forest divisions on the eastern side of landscape experience higher levels of elephant-human conflict than those on the western side; this seems to relate to a greater degree of habitat fragmentation and percentage farmers cultivating annual crops in the east. We provide several recommendations that could help maintain population viability and reduce elephant-human conflict of the Anamalai elephant landscape. (C) 2013 Deutsche Gesellschaft far Saugetierkunde. Published by Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been attempts at obtaining robust guidance laws to ensure zero miss distance (ZMD) for interceptors with parametric uncertainties. All these laws require the plant to be of minimum phase type to enable the overall guidance loop transfer function to satisfy strict positive realness (SPR). The SPR property implies absolute stability of the closed loop system, and has been shown in the literature to lead to ZMD because it avoids saturation of lateral acceleration. In these works higher order interceptors are reduced to lower order equivalent models for which control laws are designed to ensure ZMD. However, it has also been shown that when the original system with right half plane (RHP) zeros is considered, the resulting miss distances, using such strategies, can be quite high. In this paper, an alternative approach using the circle criterion establishes the conditions for absolute stability of the guidance loop and relaxes the conservative nature of some earlier results arising from assumption of in�nite engagement time. Further, a feedforward scheme in conjunction with a lead-lag compensator is used as one control strategy while a generalized sampled hold function is used as a second strategy, to shift the RHP transmission zeros, thereby achieving ZMD. It is observed that merely shifting the RHP zero(s) to the left half plane reduces miss distances signi�cantly even when no additional controllers are used to ensure SPR conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cache analysis plays a very important role in obtaining precise Worst Case Execution Time (WCET) estimates of programs for real-time systems. While Abstract Interpretation based approaches are almost universally used for cache analysis, they fail to take advantage of its unique requirement: it is not necessary to find the guaranteed cache behavior that holds across all executions of a program. We only need the cache behavior along one particular program path, which is the path with the maximum execution time. In this work, we introduce the concept of cache miss paths, which allows us to use the worst-case path information to improve the precision of AI-based cache analysis. We use Abstract Interpretation to determine the cache miss paths, and then integrate them in the IPET formulation. An added advantage is that this further allows us to use infeasible path information for cache analysis. Experimentally, our approach gives more precise WCETs as compared to AI-based cache analysis, and we also provide techniques to trade-off analysis time with precision to provide scalability.