30 resultados para NaCl concentrations
em Indian Institute of Science - Bangalore - Índia
Resumo:
Gelatin hydrogel electrolytes (GHEs) with varying NaCl concentrations have been prepared by cross-linking an aqueous solution of gelatin with aqueous glutaraldehyde and characterized by scanning electron microscopy, differential scanning calorimetry, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic chronopotentiometry. Glass transition temperatures for GHEs range between 339.6 and 376.9 K depending on the dopant concentration. Ionic conductivity behavior of GHEs was studied with varying concentrations of gelatin, glutaraldehyde, and NaCl, and found to vary between 10(-3) and 10(-1) S cm(-1). GHEs have a potential window of about 1 V. Undoped and 0.25 N NaCl-doped GHEs follow Arrhenius equations with activation energy values of 1.94 and 1.88 x 10(-4) eV, respectively. Electrochemical supercapacitors (ESs) employing these GHEs in conjunction with Black Pearl Carbon electrodes are assembled and studied. Optimal values for capacitance, phase angle, and relaxation time constant of 81 F g(-1), 75 degrees, and 0.03 s are obtained for 3 N NaCl-doped GHE, respectively. ES with pristine GHE exhibits a cycle life of 4.3 h vs 4.7 h for the ES with 3 N NaCl-doped GHE. (c) 2007 The Electrochemical Society.
Resumo:
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
The optimal parameters in the use of nuclease S1 in DNA reassociation kinetics in the presence of formamide have been determined. The conditions are especially suitable for the study of DNA rich in mole percent GC. A 10-fold dilution of the reassociation samples leading to a decrease in both NaCl and formamide concentrations, consequently resulting in a lowering of Tm by only 1.5°C, and the S1 digestion at temperatures identical to the reassociation assay in order to retain the stability of the duplex, are two important aspects of this system. Under these conditions, the kinetics of reassociation followed the theoretically predicted pattern, while the earlier reported methods have shown lower values.
Resumo:
Poly(dG-Me5dC) is known to exhibit a B→Z transition in the presence of very high concentrations of NaCl. For the first time, we report the presence of a Z-structure in sodium concentrations as low as 0.5 mM. A novel Z B Z transition is observed as the salt concentration is gradually increased. The role of water structure in B to Z transitions is discussed.
Resumo:
A thorough investigation of salt concentration dependence of lithium DNA fibres is made using X-ray diffraction. While for low salt the C-form pattern is obtained, crystalline B-type diffraction patterns result on increasing the salt concentration. The salt content in the gel (from which fibres are drawn) is estimated by equilibrium dialysis using the Donnan equilibrium principle. The salt range giving the best crystalline B pattern is determined. It is found that in this range meridional reflections occur on the fourth and sixth layer lines. In addition, the tenth layer meridian is absent at a particular salt concentration. These results strongly suggest the presence of non-helical features in the DNA molecule. Preliminary analysis of the diffraction patterns indicates a structural variability within the B-form itself. Further, the possibility of the structural parameters of DNA being similar in solid state and in solution is discussed.
Resumo:
In higher primates, increased circulating follicle-stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P-4)secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern Of P-4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3 +/- 2 vs. 27.3 +/- 3 pg/mL), and a 2- to 3-fold rise in circulating FSH levels by 24 hr (0.20 +/- 0.02 vs. 0.53 +/- 0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 mu g/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P-4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817-824, 2009.
Resumo:
When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.
Resumo:
In this paper we employ the phenomenon of bending deformation induced transport of cations via the polymer chains in the thickness direction of an electro-active polymer (EAP)-metal composite thin film for mechanical energy harvesting. While EAPs have been applied in the past in actuators and artificial muscles, promising applications of such materials in hydrodynamic and vibratory energy harvesting are reported in this paper. For this, functionalization of EAPs with metal electrodes is the key factor in improving the energy harvesting efficiency. Unlike Pt-based electrodes, Ag-based electrodes have been deposited on an EAP membrane made of Nafion. The developed ionic metal polymer composite (IPMC) membrane is subjected to a dynamic bending load, hydrodynamically, and evaluated for the voltage generated against an external electrical load. An increase of a few orders of magnitude has been observed in the harvested energy density and power density in air, deionized water and in electrolyte solutions with varying concentrations of sodium chloride (NaCl) as compared to Pt-based IPMC performances reported in the published literature. This will have potential applications in hydrodynamic and residual environmental energy harvesting to power sensors and actuators based on micro-andn nano-electro-mechanical systems (MEMS and NEMS) for biomedical,maerospace and oceanic applications.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
We observe a surprisingly sharp increase in the pair hydrophobicity in the water climethylsulfoxide (DMSO) binary mixture at small DMSO concentrations, with the mole fraction of DMSO (x(D)) in the range 0.12-0.16. The increase in pair hydrophobicity is measured by an increase in the depth of the first minimum in the potential of mean force (PMF) between two methane molecules. However, this enhanced hydrophobicity again weakens at higher DMSO concentrations. We find markedly unusual behavior of the pure binary mixture (in the same composition range) in the diffusion coefficient of DMSO and in the local composition fluctuation of water, We find that, in the said composition range, the average coordination number of the methyl groups (of distinct DMSO) varies between 2.4 and 2.6, indicating the onset of the formation of a chain-like extended connectivity in an otherwise stable tetrahedral network comprising of water and DMSO molecules. We propose that the enhanced pair hydrophobicity of the binary mixture at low DMSO concentrations is due to the participation of the two methane molecules in the local structural order and the emerging molecular associations in the water-DMSO mixture.
Resumo:
The behaviour of the PbO2 electrode in NaNO3, Na2SO4 NaClO4 and NaCl in the pH range 3.0–10.5 has been studied by cyclic voltammetry. When the electrode is cycled between 0.30 and 1.90 V, a large cathodic current peak appears in the negative scan; in the subsequent cycle, two anodic peaks appear. The addition of H2O2 at low concentrations to the electrolyte also results in two anodic peaks at the same potentials. A number of possible explanations for the appearance of the cathodic peak, and a mechanism for the oxidation of PbO to PbO2 through Pb3O4 corresponding to the two anodic peaks, are proposed.
Resumo:
The zeta potential of high-purity hematite at pH 6 and in a 10−3N NaCl solution has been determined at different concentrations of acetone using the streaming potential technique and the results correlated with the microhardness of the mineral. The zeta potential has been found to decrease as the hardness increases reaching a minimum at 10 cc per litre concentration of acetone when the hardness reaches a maximum. The results have been explained on the basis of competitive adsorption of chloride ions and acetone molecules at low concentrations of acetone and coadsorption of both species above 10 cc per litre concentration. Acetone in distilled water and 10−3N NaCl in distilled water decrease the microhardness of hematite individually between pH 5 to 7 and in combination increase the microhardness reaching a maximum at pH 6.