3 resultados para NVD
em Indian Institute of Science - Bangalore - Índia
Resumo:
For an n(t) transmit, nr receive antenna (n(t) x n(r)) MIMO system with quasi- static Rayleigh fading, it was shown by Elia et al. that space-time block code-schemes (STBC-schemes) which have the non-vanishing determinant (NVD) property and are based on minimal-delay STBCs (STBC block length equals n(t)) with a symbol rate of n(t) complex symbols per channel use (rate-n(t) STBC) are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r). Further, explicit linear STBC-schemes (LSTBC-schemes) with the NVD property were also constructed. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of the Alamouti code-scheme for the 2 x 1 system and rate-1, diagonal STBC-schemes with NVD for an nt x 1 system, no known minimal-delay, rate-n(r) LSTBC-scheme has been shown to be DMT-optimal. In this paper, we first obtain an enhanced sufficient criterion for an STBC-scheme to be DMT optimal and using this result, we show that for certain asymmetric MIMO systems, many well-known LSTBC-schemes which have low ML-decoding complexity are DMT-optimal, a fact that was unknown hitherto.
Resumo:
For any n(t) transmit, n(r) receive antenna (n(t) x n(r)) multiple-input multiple-output (MIMO) system in a quasi-static Rayleigh fading environment, it was shown by Elia et al. that linear space-time block code schemes (LSTBC schemes) that have the nonvanishing determinant (NVD) property are diversity-multiplexing gain tradeoff (DMT)-optimal for arbitrary values of n(r) if they have a code rate of n(t) complex dimensions per channel use. However, for asymmetric MIMO systems (where n(r) < n(t)), with the exception of a few LSTBC schemes, it is unknown whether general LSTBC schemes with NVD and a code rate of n(r) complex dimensions per channel use are DMT optimal. In this paper, an enhanced sufficient criterion for any STBC scheme to be DMT optimal is obtained, and using this criterion, it is established that any LSTBC scheme with NVD and a code rate of min {n(t), n(r)} complex dimensions per channel use is DMT optimal. This result settles the DMT optimality of several well-known, low-ML-decoding-complexity LSTBC schemes for certain asymmetric MIMO systems.
Resumo:
In this paper, a new method is proposed to obtain full-diversity, rate-2 (rate of two complex symbols per channel use) space-time block codes (STBCs) that are full-rate for multiple input double output (MIDO) systems. Using this method, rate-2 STBCs for 4 x 2, 6 x 2, 8 x 2, and 12 x 2 systems are constructed and these STBCs are fast ML-decodable, have large coding gains, and STBC-schemes consisting of these STBCs have a non-vanishing determinant (NVD) so that they are DMT-optimal for their respective MIDO systems. It is also shown that the Srinath-Rajan code for the 4 x 2 system, which has the lowest ML-decoding complexity among known rate-2 STBCs for the 4x2 MIDO system with a large coding gain for 4-/16-QAM, has the same algebraic structure as the STBC constructed in this paper for the 4 x 2 system. This also settles in positive a previous conjecture that the STBC-scheme that is based on the Srinath-Rajan code has the NVD property and hence is DMT-optimal for the 4 x 2 system.