49 resultados para NONPLANAR CONFORMERS

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro_(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro_(L)Pro_(L)Phe-OMe (2), and Piv-(D)Pro_(L)Pro_(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The C-13 spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C-beta and C-gamma carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all transform across the di-Proline segment. The results are In agreement with the X-ray analysis. Solid state N-15 resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. H-1 chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between H-1-C-13. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (C) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octabromotetraphenylporphyrin adopts a severe saddle-shaped distorted structure owing to the steric crowding of heavy bromine substituents. The rate enhancement of porphyrin metalation reaction is primarily due to the nonplanarity of the ring while the electronic effect diminishes the affinity of the porphyrin towards metal ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt (11) phthalocyanine (CoPc) molecules have been encapsulated within the supercage of zeolite-Y. The square-planar complex, being larger than the almost spherical cage, is forced to adopt a distorted geometry on encapsulation. A comparative spectroscopic and magnetic investigation of CoPc encapsulated in zeolite-Y and in the unencapsulated state is reported. These results supported by molecular modeling have been used to understand the nature and extent of the loss of planarity of CoPc on encapsulation. The encapsulated molecule is shown to be the trans-diprotonated species in which the center of inversion is lost due to distortions required to accommodate the square complex within the zeolite. Encapsulation also leads to an enhancement of the magnetic moment of the CoPc. This is shown to be a consequence of the nonplanar geometry of the encapsulated molecule resulting in an excited high-spin state being thermally accessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of non-planarity of the peptide unit on helical structures stabilized by intrachain hydrogen bonds is discussed. While the present calculations generally agree with those already reported in the literature for right-handed helical structures, it is found that the most stable left-handed structure is a novel helix, called the delta-helix. Its helical parameters are close to these reported for poly-beta-benzyl-L -aspartate. Conformational energy calculations show that poly-beta-benzyl-L -aspartate with the delta-helical structure is considerably more stable than the structure it is generally believed to take up (the omega-helix) by about 15 kcal/mol-residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efavirenz, (S)-6-chloro-4-(cyclopropylethynyl)-1,4-dihydro-4-(trifluoromethyl)-2H-3 ,1-benzoxazin-2-one, is an anti HIV agent belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. A systematic quantum chemical study of the possible conformations, their relative stabilities and vibrational spectra of efavirenz has been reported. Structural and spectral characteristics of efavirenz have been studied by vibrational spectroscopy and quantum chemical methods. Density functional theory (DFT) calculations for potential energy curve, optimized geometries and vibrational spectra have been carried out using 6-311++G(d,p) basis sets and B3LYP functionals. Based on these results, we have discussed the correlation between the vibrational modes and the crystalline structure of the most stable form of efavirenz. A complete analysis of the experimental infrared and Raman spectra has been reported on the basis of wavenumber of the vibrational bands and potential energy distribution. The infrared and the Raman spectra of the molecule based on OFT calculations show reasonable agreement with the experimental results. The calculated HOMO and LUMO energies shows that charge transfer occur within the molecule. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-pi and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to beta-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several N,N -dipyridyl- and N-phenyl-N -pyridyl-thioureas were examined in different solvents at various temperatures by 1H NMR in order to study their conformational properties. The influence of concentration and the methyl substituent in the pyridine ring on the chemical shifts of the NH and pyridine groups was investigated. The observed chemical shifts are analysed in terms of the conformational properties of the molecules. Free energy barriers to the internal rotation about the C N bonds have been determined. Infrared spectra have been measured to supplement the NMR studies. Intramolecular hydrogen bonding played a major role in the preferred conformation of pyridylthioureas. The data further revealed an interesting dynamic exchange phenomenon occurring in symmetric N,N -dipyridylthioureas between two intramolecularly hydrogen bonded conformers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986)] that the Euler Painlevé equation yy[script `]+ay[script ']2+ f(x)yy[script ']+g(x) y2+by[script ']+c=0 represents the generalized Burgers equations (GBE's) in the same manner as Painlevé equations do the KdV type. The GBE was treated with a damping term in some detail. In this paper another GBE ut+uaux+Ju/2t =(gd/2)uxx (the nonplanar Burgers equation) is considered. It is found that its self-similar form is again governed by the Euler Painlevé equation. The ranges of the parameter alpha for which solutions of the connection problem to the self-similar equation exist are obtained numerically and confirmed via some integral relations derived from the ODE's. Special exact analytic solutions for the nonplanar Burgers equation are also obtained. These generalize the well-known single hump solutions for the Burgers equation to other geometries J=1,2; the nonlinear convection term, however, is not quadratic in these cases. This study fortifies the conjecture regarding the importance of the Euler Painlevé equation with respect to GBE's. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preferred conformations of β-phenylpropionyl-Image -phenylalanine (β-PPP) and N-carbobenzoxy-L-phenylalanine (Cbz-Phe), two inhibitors of thermolysin, have been determined by computing potential energy using empirial potential energy functions. Of the 15 to 20 conformations that are favoured for each of these inhibitors only a few have the right conformation to reach the active site of the enzyme. The conformer of β-PPP that initiates binding with the enzyme is different from the bound one, while for Cbz-Phe the bound and initiating conformers are quite similar. Thus, β-PPP favours the ‘induced fit’ model while Cbz-Phe follows the ‘lock and key’ model of binding. The inhibitors differ in their alignment at the active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probable modes of binding of some complex carbohydrates, which have the trimannosidic core structure (Man3GlcNAc2), to concanavalin A (Con A) have been determined using a computer modelling technique. These studies show that Con a can bind to the terminal mannose residues of the trimannosidic core structure and to the internal mannosyl as well as to the terminal N-acetylglucosamine residues of the N-acetylglucosamine substituted trimannosidic core structure. The oligosaccharide with terminal mannose residues can bind in its minimum energy conformers, whereas the oligosaccharide with internal mannosyl and terminal N-acetylglucosamine residues can bind only in higher energy conformers. In addition the former oligosaccharide forms more hydrogen bonds with Con A than the latter. These results suggest that, for these oligosaccharides, the terminal mannose residue has a much higher probability of reaching the binding site than either the internal mannosyl or the terminal N-acetylglucosamine residues. The substitution of a bisecting N-acetylglucosamine residue on these oligosaccharides, affects significantly the accessibility of the residues which bind to Con A and thereby reduces their binding affinity. It thus seems that the binding affinity of an oligosaccharide to Con A depends not only on the number of sugar residues which possess free 3-, 4- and 6-hydroxyl groups but also on the accessibility of these sugar residues to Con A. This study also reveals that the sugar binding site of Con A is small and that the interactions between Con A and carbohydrates are extended slightly beyond the single sugar residue that is placed in the binding site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The infrared spectra of monothiodiacetamide (MTDA, CHaCONHCSCH3) and its N-deuterated compound in solution, solid state and at low temperature are measured. Normal coordinate analysis for the planar vibrations of MTDAd o and -dl have been performed for the two most probable cis-trans-CONHCSor -CSNHCO-conformers using a simple Urey-Bradley force function. The conformation of MTDA derived from the vibrational spectra is supported by the all valence CNDO/2 molecular orbital method. The vibrational assignments and the electronic structure of MTDA are also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a singular perturbation analysis the nonplanar Burgers' equation is solved to yield the shock wave-displacement due to diffusion for spherical and cylindrical N waves, thus supplementing the earlier results of Lighthill for the plane N waves. Physics of Fluids is copyrighted by The American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relative stabilities of a- and Blo-helical structures for polymers of a-aminoisobutyric acid (Aib) have been worked out, using the classical potential energy functions. To make a comparative study, we have used Buckingham "6-exp" and Kitaigorodsky's potential functions. Conformational analysis of the dipeptide segment with Aib residue indicates the necessity for nonplanar distortion of the peptide unit, which is a common feature in the observed crystal structures with Aib residues. In the range of Aw -10 to +loo studied, a-helical conformations are preferred in the region -3" < Aw < +loo, and Blo-helical conformations are preferred in the region -3" > Aw > -10'. Minimum energy conformations for right-handed structures are found in the +ue region of Aw and correspondingly for left-handed structures in the -ue region of Aw. For Aw - 6", a-helical structures have four- or near fourfold symmetry with h - 1.5 A. Such a helix with n = 4 and h = 1.5 A is termed an a'-helix. This structure is found to be consistent with the electron diffraction data of Malcolm3 and energetically more favorable than the standard 310-helix.