109 resultados para NETWORK MODEL
em Indian Institute of Science - Bangalore - Índia
Resumo:
On the basis of a more realistic tetrakaidecahedral structure of foam bubbles, a network model of static foam drainage has been developed. The model considers the foam to be made up of films and Plateau borders. The films drain into the adjacent Plateau borders, which in turn form a network through which the liquid moves from the foam to the liquid pool. From the structure, a unit flow cell was found, which constitutes the foam when stacked together both horizontally and vertically. Symmetry in the unit flow cell indicates that the flow analysis of a part of it can be employed to obtain the drainage for the whole foam. Material balance equations have been written for each segment of this subsection, ensuring connectivity, and solved with the appropriate boundary and initial conditions. The calculated rates of drainage, when compared with the available experimental results, indicate that the model predicts the experimental results well.
Resumo:
An adaptive optimization algorithm using backpropogation neural network model for dynamic identification is developed. The algorithm is applied to maximize the cellular productivity of a continuous culture of baker's yeast. The robustness of the algorithm is demonstrated in determining and maintaining the optimal dilution rate of the continuous bioreactor in presence of disturbances in environmental conditions and microbial culture characteristics. The simulation results show that a significant reduction in time required to reach optimal operating levels can be achieved using neural network model compared with the traditional dynamic linear input-output model. The extension of the algorithm for multivariable adaptive optimization of continuous bioreactor is briefly discussed.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Resumo:
Potassium disilicate glass and melt have been investigated by using a new partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygenrich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
Potassium disilicate glass and melt have been investigated by using anew partial charge based potential model in which nonbridging oxygens are differentiated from bridging oxygens by their charges. The model reproduces the structural data pertaining to the coordination polyhedra around potassium and the various bond angle distributions excellently. The dynamics of the glass has been studied by using space and time correlation functions. It is found that K ions migrate by a diffusive mechanism in the melt and by hops below the glass transition temperature. They are also found to migrate largely through nonbridging oxygen-rich sites in the silicate matrix, thus providing support to the predictions of the modified random network model.
Resumo:
The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.
Resumo:
We provide new analytical results concerning the spread of information or influence under the linear threshold social network model introduced by Kempe et al. in, in the information dissemination context. The seeder starts by providing the message to a set of initial nodes and is interested in maximizing the number of nodes that will receive the message ultimately. A node's decision to forward the message depends on the set of nodes from which it has received the message. Under the linear threshold model, the decision to forward the information depends on the comparison of the total influence of the nodes from which a node has received the packet with its own threshold of influence. We derive analytical expressions for the expected number of nodes that receive the message ultimately, as a function of the initial set of nodes, for a generic network. We show that the problem can be recast in the framework of Markov chains. We then use the analytical expression to gain insights into information dissemination in some simple network topologies such as the star, ring, mesh and on acyclic graphs. We also derive the optimal initial set in the above networks, and also hint at general heuristics for picking a good initial set.
Resumo:
In this paper we examine the energy consumption of IP Over Optical WDM Networks. As the number of Internet users increases the Internet expands in reach and capacity. This results in increased energy consumption of the network. Minimizing the power consumption, termed as ``Greening the Internet'', is desirable to help service providers (SP) operate their networks and provide services more efficiently in terms of power consumption. Minimizing the operational power typically depends on the strategy (e. g., lightpath bypass, lightpath non-bypass and traffic grooming) and operations (e. g., electronic domain versus optical domain). We consider a typical optical backbone network model, and develop a model which minimizes the power consumption. Performance calculation shows that our method consumes less power compared to traffic grooming approach.
Resumo:
The nature of amorphous carbon has been explored by molecular mechanics by examining the structures of species such as C84Hx and C150Hx, wherein the percentage of sp(3) carbons is progressively increased in a graphitic network. The nature of diamond-like carbon has been similarly investigated by examining the structures of C84Hx and C102Hx where the percentage of sp(2) carbons is varied in an sp(3) network. The dependence of the average coordination number as well as the sp(3)/sp(2) atom ratio on the atom fraction of hydrogen has been investigated in light of the random covalent network model.
Resumo:
Dielectric constants and loss tangents of As-Se glasses have been measured between 300 K and the respective glass transition temperatures and between 1 kHz and 20 kHz. The variation of dielectric constants has been interpreted in terms of both heteropolarity of bonds and average bond energies employing a chemically ordered network model. Various contributions to total molar polarizations have been estimated. Rapid rise of loss tangent in the vicinity of glass transitions has been interpreted in terms of rapid increase; of d.c. conductivity.
Resumo:
IR absorption spectra of As-Se glasses have been studied over a wide range of compositions. Various two-phonon, multiphonon (combination tones) and impurity absorptions have been identified. Compositional variation of relative band intensities has been explained in terms of the chemically ordered network model.
Resumo:
We present a new computationally efficient method for large-scale polypeptide folding using coarse-grained elastic networks and gradient-based continuous optimization techniques. The folding is governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method we are able to substantially reduce the computation time on ordinary desktop computers for simulation of polypeptide folding starting from a fully unfolded state. We compare our results with available native state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins, Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small de-novo protein, Chignolin. We also use two well known protein structure prediction software, MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal elastic network model can lead to higher accuracy and lower time required for simulation.
Resumo:
Artificial neural networks (ANNs) have shown great promise in modeling circuit parameters for computer aided design applications. Leakage currents, which depend on process parameters, supply voltage and temperature can be modeled accurately with ANNs. However, the complex nature of the ANN model, with the standard sigmoidal activation functions, does not allow analytical expressions for its mean and variance. We propose the use of a new activation function that allows us to derive an analytical expression for the mean and a semi-analytical expression for the variance of the ANN-based leakage model. To the best of our knowledge this is the first result in this direction. Our neural network model also includes the voltage and temperature as input parameters, thereby enabling voltage and temperature aware statistical leakage analysis (SLA). All existing SLA frameworks are closely tied to the exponential polynomial leakage model and hence fail to work with sophisticated ANN models. In this paper, we also set up an SLA framework that can efficiently work with these ANN models. Results show that the cumulative distribution function of leakage current of ISCAS'85 circuits can be predicted accurately with the error in mean and standard deviation, compared to Monte Carlo-based simulations, being less than 1% and 2% respectively across a range of voltage and temperature values.
Resumo:
Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.