238 resultados para NAD(P)H OXIDASE

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soil micro-organism identified as Alcaligenes eutrophus capable of utilizing nerolidol, a sesquiterpene alcohol as the sole source of carbon, contains an inducible NAD(P)(+)-linked secondary-alcohol dehydrogenase (SADH), The enzyme was purified 252-fold from crude cell-free extract by a combination of salt precipitation, ion-exchange and affinity-matrix chromatography, Native and SDS/PAGE PAGE of the purified enzyme showed a single protein band and the enzyme appears to be a homotetramer having an apparent molecular mass of 139 kDa comprising four identical subunits of 38.5 kDa, The isoelectric point (pi) of SADH was determined to be 6.2, Depending on pH of the reaction media, the enzyme carried out both oxidation and reductions of various terpenoids and steroids, At pH 5.5, the enzyme catalysed the stereospecific reduction of prochiral ketones to optically active (S)-alcohols and the oxidation reaction was predominated over the former at pH 9.5, NADP(+) and NADPH were respectively preferred over NAD(+) and NADH for oxidation and reduction reactions, The K-m values for testosterone, NADP(+) and NAD(+) were 11.8, 55.6, and 122 mu M respectively, Neither enzyme was significantly inhibited by metal-binding agents, but some thiol-blocking compounds inhibited it, SADH tolerates moderate concentrations of water-miscible organic solvents such as ethanol, methanol, acetone and dioxan, Some of the properties of this enzyme were found to be significantly different from those thus far described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a ``spatial motif'' and several ``fold specific hot spots'' that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of NADH by mouse liver plasma membranes was shown to be accompanied by the formation of H2O2. The rate of H2O2 formation was less than one-tenth the rate of oxygen uptake and much slower than the rate of reduction of artificial electron acceptors. The optimum pH for this reaction was 7.0 and theK m value for NADH was found to be 3×10–6 M. The H2O2-generating system of plasma membranes was inhibited by quinacrine and azide, thus distinguishing it from similar activities in endoplasmic reticulum and mitochondria. Both NADH and NADPH served as substrates for plasma membrane H2O2 generation. Superoxide dismutase and adriamycin inhibited the reaction. Vanadate, known to stimulate the oxidation of NADH by plasma membranes, did not increase the formation of H2O2. In view of the growing evidence that H2O2 can be involved in metabolic control, the formation of H2O2 by a plasma membrane NAD(P)H oxidase system may be pertinent to control sites at the plasma membrane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assimilation of nitrate and various other inorganic nitrogen compounds by different yeasts was investigated. Nitrate, nitrite, hydroxylamine, hydrazine, ammonium sulphate, urea and L-asparagine were tested as sole sources of nitrogen for the growth of Candida albicans, C. pelliculosa, Debaryomyces hansenii, Saccharomyces cerevisiae, C. tropicalis, and C. utilis. Ammonium sulphate and L-asparagine supported the growth of all the yeasts tested except D. hansenii while hydroxylamine and hydrazine failed to support the growth of any. Nitrate and nitrite were assimilated only by C. utilis. Nitrate utilization by C. utilis was also accompanied by the enzymatic activities of NAD(P)H: nitrate oxidoreductase (EC 1.6.6.2) and NAD(P)H: nitrite oxidoreductase (EC 1.6.6.4), but not reduced methyl viologen-or FAD-nitrate oxidoreductases (EC 1.7.99.4). It is demonstrated here that nitrate and nitrite reductase activities are responsible for the ability of C. utilis to assimilate primary nitrogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alcaligenes eutrophus utilizing nerolidol, a sesquiterpene alcohol,as the sole source of carbon contains an inducible NAD(P)+-linked secondary alcohol dehydrogenase (SADH). The enzyme was purified to homogeneity by a combination of salt precipitation, ion exchange and affinity matri chromatographies. The apparent molecular mass of the enzyme was estimated to be 139 KDa with four identical subunits of 38.5 KDa. The enzyme carried out both oxidation and reduction reactions. At pH 5.5, enzyme catalyzed the stereospecific reduction of prochiral ketones to secondary alcohols. The pH optimum for the oxidation reaction was 9.5. NADP+ and NADPH were respectively preferred over NAD+ and NADH for oxidation and reduction reactions. Some of the properties of this enzyme were found to be significantly different from those thus far described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oral administration of pulegone (400 mg/kg) to rats once daily for five days caused significant decreases in the levels of liver microsomal cytochrome P-450 and heme. Cytochrome b5 and NAD(P)H-cytochrome c-reductase activities were not affected. Massive hepatotoxicy accompanied by an increase in serum glutamate pyruvate transaminase (SGPT) and a decrease in glucose-6-phosphatase were observed upon treatment with pulegone. A significant decrease in aminopyrine N-demethylase was also noticed after pulegone administration. Menthone or carvone (600 mg/kg), compounds related to pulegone, when administered orally did not cause any decrease in cytochrome P-450 levels. The hepatotoxic effects of pulegone were both dose and time dependent. Pretreatment of rats with phenobarbital (PB) or diethylmaleate (DEM) potentiated the hepatotoxicity caused by pulegone, whereas, pretreatment with 3-methylcholanthrene (3-MC) or piperonyl butoxide protected from it. It appears that a PB induced cytochrome P-450 catalysed reactive metabolite(s) may be responsible for the hepatotoxicity caused by pulegone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oral administration (250 mg/kg) of menthofuran, a monoterpene furan, to rats once daily for 3 days caused hepatotoxicity as judged by a significant increase in serum glutamate pyruvate transaminase (SGPT) and decreases in glucose-6-phosphatase and aminopyrine N-demethylase activities. Administration of menthofuran also resulted in a decrease in the levels of liver microsomal cytochrome P-450, whereas cytochrome b(5) and NAD(P)H-cytochrome c reductase activities were not affected. These effects of menthofuran were both dose- and time-dependent. Pretreatment of rats with phenobarbital (PB) prior to menthofuran treatment potentiated hepatotoxicity suggesting that a PB-induced cytochrome P-450 catalyzed the formation of reactive metabolite(s) responsible for the hepatotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Microbial transformation of N, N-dimethyl-p-phenylene diamine (DMPDA), a microbial product formed from the fungicide fenaminosulf (p-dimethylaminobenzenediazo sodium sulfonate) was studied by enriching microbes in soils treated with the amine. Microorganisms isolated from DMPDA-treated soil belonged to the genera of Micrococcus, Alcaligenes, and Corynebacterium. Of the various isolates, Alcaligenes DM4 showed maximal growth on DMPDA utilizing it as sources of carbon and nitrogen. When grown in mineral salts basal medium containing 0.05% DMPDA to serve as carbon and nitrogen sources, Alcaligenes DM4 grew exponentially up to 18 h. Even though the characterization of the complete pathway of microbial degradation of DMPDA could not be carried out due to the auto-oxidation of the compound, the initial transformation product of DMPDA by Alcaligenes DM4 has been identified as a dimer. The dimer is generated into the culture medium presumably by the extra-cellular oxidase of Alcaligenes DM4. It is suggested that the risk-benefit evaluation on the use of fenaminosulf is to be made taking into consideration the microbial transformations of the fungicide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A partically purified enzyme from Arthrobacter synephrinum was found to catalyse the conversion of (+/-)-synphrine into p-hydroxyphrenylacetaldehyde and methylamine. The enzyme is highly specific for synephrine and is distinctly different from monoamine oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rates of NADH oxidation in presence of xanthine oxidase increase to a small and variable extent on addition of high concentrations of lactate dehydrogenase and other dehydrogenases. This heat stable activity is similar to polyvanadate-stimulation with respect to pH profile and SOD sensitivity. Isocitric dehydrogenase (NADP-specific) showed heat labile, SOD-sensitive polyvanadate-stimulated NADH oxidation activity. Polyvanadate-stimulated SOD-sensitive NADH oxidation was also found to occur with riboflavin, FMN and FAD in presence of a non-specific protein, BSA, suggesting that some flavoproteins may possess this activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The terminal step in the oxidation of anthranilic acid to catechol by anthranilic acid oxidase system from Tecoma stans, which converts o-aminophenol to catechol has been studied in detail. The reaction catalyses the conversion of one molecule of o-aminophenol to one molecule each of ammonia and catechol. The partially purified enzyme has a pH optimum of 6·2 in citrate-phosphate buffer and a temperature optimum of 45°. The metal ions, Mg2+, Co2+ and Fe3+ were inhibitory to the reaction. Metal chelating agents like 8-hydroxyquinoline, o-phenanthroline, and diethyldithiocarbamate, caused a high degree of inhibition. A sulfhydryl requirement for the reaction was inferred from the inhibition of the reaction by p-chloromercuribenzoate and its reversal with GSH. Atebrin inhibition was reversed by addition of FAD to the reaction mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enzyme system which catalysed the conversion of anthranilic acid to catechol has been purified 20-fold from a cell-free leaf extract of Tecoma stans. The optimum substrate concentration was 10−3 M and optimum temperature for the reaction was 45°. The presence of a multi-enzyme system was inferred from inhibition studies. The formation of catechol was inhibited by Mg2+, Zn2+, and Co2+ ions, whereas anthranilic acid disappearance was not affected to the same extent. The effect of metal chelating agents like EDTA, cyanide and pyrophosphate showed a similar trend. PCMB inhibited catechol formation but had no effect on anthranilic acid disappearance. The reaction was not inhibited by catalase, nor was it activated by peroxide-donating systems. This ruled out the possibility of peroxidative type of reaction. The overall reaction is markedly activated by NADPH and THFA. This multi-enzyme was separated into three different components, by fractionation with Alumina Cγ and calcium phosphate gels. The overall reaction catalysed by these components can be represented as anthranilic acid→3-hydroxy anthranilic acid→o-aminophenol→catechol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of an indole oxidase (indole: O2 oxidoreductase) was detected in the leaf extracts of Tecoma stans. The end product of the reaction was identified as anthranil. Formylaminobenzaldehyde, and o- aminobenzaldehyde were detected as intermediates in the overall conversion. Oxygen-uptake studies established that 3 atoms of oxygen were consumed in the formation of anthranil form I molecule of indole. The enzyme showed an absolute requirement for FAD and Cu2+ for maximum activity. FMN was ineffective as a cofactor. The enzyme had an optimum pH of 5.0. Inhibition studies with GSH and p-chloromericuribenzoate showed that a sulfhydrylcupric-ion complex at the active centre is highly essential.