17 resultados para Mysteries and miracle-plays, German.

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, solidification microstructure and texture evolution in grain-refined Ti-6Al-4V and γ-TiAl alloys via trace boron addition are compared with their baseline counterparts. Boron addition resulted in dramatic grain refinement by almost an order of magnitude. The texture developed in these alloys is also markedly different from the baseline alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron addition to conventional titanium alloys below the eutectic limit refines the cast microstructure and improves mechanical properties. The present work explores the influence of hypoeutectic boron addition on the microstructure and texture evolution in Ti-6Al-4V alloy under beta extrusion. The beta extruded microstructure of Ti-6Al-4V is characterized by shear bands parallel to the extrusion direction. In contrast, the extruded Ti-6Al-4V-0.1B alloy shows a regular beta worked microstructure consisting of fine prior beta grains and acicular alpha-lamellae with no signs of the microstructural instability. Crystallographic texture after extrusion was almost identical for the two alloys indicating the similarity in their transformation behavior, which is attributed to complete dynamic recrystallization during beta processing. Microstructural features as well as crystallographic texture indicate dominant grain boundary related deformation processes for the boron modified alloy that leads to homogeneous deformation without instability formation. The absence of shear bands has significant technological importance as far as the secondary processing of boron added alloys in (alpha + beta)-phase field are concerned. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately one third of the world population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. A better understanding of the pathogen biology is crucial to develop new tools/strategies to tackle its spread and treatment. In the host macrophages, the pathogen is exposed to reactive oxygen species, known to damage dGTP and GTP to 8-oxo-dGTP and 8-oxo-GTP, respectively. Incorporation of the damaged nucleotides in nucleic acids is detrimental to organisms. MutT proteins, belonging to a class of Nudix hydrolases, hydrolyze 8-oxo-G nucleoside triphosphates/diphosphates to the corresponding nucleoside monophosphates and sanitize the nucleotide pool. Mycobacteria possess several MutT proteins. However, a functional homolog of Escherichia coli MutT has not been identified. Here, we characterized MtuMutT1 and Rv1700 proteins of M. tuberculosis. Unlike other MutT proteins, MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP, and 8-oxo-GTP to 8-oxo-GDP. Rv1700 then converts them to the corresponding nucleoside monophosphates. This observation suggests the presence of a two-stage mechanism of 8-oxo-dGTP/8-oxo-GTP detoxification in mycobacteria. MtuMutT1 converts 8-oxo-dGTP to 8-oxo-dGDP with a K-m of similar to 50 mu M and V-max of similar to 0.9 pmol/min per ng of protein, and Rv1700 converts 8-oxo-dGDP to 8-oxo-dGMP with a K-m of similar to 9.5 mu M and V-max of similar to 0.04 pmol/min per ng of protein. Together, MtuMutT1 and Rv1700 offer maximal rescue to E. coli for its MutT deficiency by decreasing A to C mutations (a hallmark of MutT deficiency). We suggest that the concerted action of MtuMutT1 and Rv1700 plays a crucial role in survival of bacteria against oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetylation of lysine residues is a posttranslational modification that is used by both eukaryotes and prokaryotes to regulate a variety of biological processes. Here we identify multiple substrates for the cAMP-dependent protein lysine acetyltransferase from Mycobacterium tuberculosis (KATmt). We demonstrate that a catalytically important lysine residue in a number of FadD (fatty acyl CoA synthetase) enzymes is acetylated by KATmt in a cAMP-dependent manner and that acetylation inhibits the activity of FadD enzymes. A sirtuin-like enzyme can deacetylate multiple FadDs, thus completing the regulatory cycle. Using a strain deleted for the KATmt ortholog in Mycobacterium bovis Bacillus Calmette-Guerin (BCG), we show for the first time that acetylation is dependent on intracellular cAMP levels. KATmt can utilize propionyl CoA as a substrate and, therefore, plays a critical role in alleviating propionyl CoA toxicity in mycobacteria by inactivating acyl CoA synthetase (ACS). The precision by which mycobacteria can regulate the metabolism of fatty acids in a cAMP-dependent manner appears to be unparalleled in other biological organisms and is ideally suited to adapt to the complex environment that pathogenic mycobacteria experience in the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tensile stress–strain response and fracture in a hypereutectic Ti–6Al–4V–1.7B (weight percent) alloy were investigated by employing interrupted tensile tests combined with acoustic emission measurements, with the aim to identify the cause for the observed low ductility in this alloy. These tests were complemented with microscopy. The alloy contains TiB whiskers of different length scales, the majority of which include micro-whiskers ( 5–10 μm length) and a few primary-whiskers ( 200–300 μm length). Although the fracture of both types of whiskers occur during deformation, the former leads to a gradual decrease in the secant modulus whereas initiation of the latter leads to a drastic drop in the modulus along with failure of the specimen, limiting the ductility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium alloys like Ti-6A-4V are the backbone materials for aerospace, energy and chemical industries. Hypoeutectic boron addition to Ti-6Al-4V alloy produces a reduction in as-cast grain size by roughly an order of magnitude resulting in the possibility of avoiding ingot breakdown step and thereby reducing the processing cost. In the present study, ISM processed as-cast boron added Ti-6Al-4V alloy is deformed in (alpha+beta)-phase field, where alpha-lath bending seemed to be the dominating deformation mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their high strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (alpha+beta) alloys like Ti-6Al-4V is the backbone materials for aerospace, energy, and chemical industries. Trace boron addition (similar to 0.1 wt. %) to the alloy Ti-6Al-4V produces a reduction in as-cast grain size by roughly an order of magnitude resulting in enhanced ductility, higher stiffness, strength and good fracture resistance. Boron addition could also affect the evolution of texture and microstructure in the material. The solidification microstructures of Boron free as well as Boron containing Ti-6Al-4V are found to be almost homogeneous from periphery towards the center of as-cast ingot in terms of both alpha-colony size and distribution. Boron addition substantially reduces alpha-colony size (similar to 50-80 mu m). A gradual change in alpha texture from periphery towards the center has been observed with orientations close to specific texture components suggesting the formation of texture zones. The mechanism of texture evolution can be visualized as a result of variant selection during solidification through (alpha+beta) phase field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Girsanov linearization method (GLM), proposed earlier in Saha, N., and Roy, D., 2007, ``The Girsanov Linearisation Method for Stochastically Driven Nonlinear Oscillators,'' J. Appl. Mech., 74, pp. 885-897, is reformulated to arrive at a nearly exact, semianalytical, weak and explicit scheme for nonlinear mechanical oscillators under additive stochastic excitations. At the heart of the reformulated linearization is a temporally localized rejection sampling strategy that, combined with a resampling scheme, enables selecting from and appropriately modifying an ensemble of locally linearized trajectories while weakly applying the Girsanov correction (the Radon-Nikodym derivative) for the linearization errors. The semianalyticity is due to an explicit linearization of the nonlinear drift terms and it plays a crucial role in keeping the Radon-Nikodym derivative ``nearly bounded'' above by the inverse of the linearization time step (which means that only a subset of linearized trajectories with low, yet finite, probability exceeds this bound). Drift linearization is conveniently accomplished via the first few (lower order) terms in the associated stochastic (Ito) Taylor expansion to exclude (multiple) stochastic integrals from the numerical treatment. Similarly, the Radon-Nikodym derivative, which is a strictly positive, exponential (super-) martingale, is converted to a canonical form and evaluated over each time step without directly computing the stochastic integrals appearing in its argument. Through their numeric implementations for a few low-dimensional nonlinear oscillators, the proposed variants of the scheme, presently referred to as the Girsanov corrected linearization method (GCLM), are shown to exhibit remarkably higher numerical accuracy over a much larger range of the time step size than is possible with the local drift-linearization schemes on their own.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracture characteristics of Al-Si based eutectic alloy are investigated in the unmodified and modified conditions under compression. The investigations are carried out at different strain rates and temperatures. Fracture of the alloy starts with eutectic Si particle fracture and modification plays an important role in particle fracture. The fraction of fractured particles is found to be always lesser in the modified condition than in the unmodified condition. Particle fracture increases with increase in strain. It is found that the Si particle fracture shows an increase with increase in strain rate and decreases with increase in temperature at 10% strain. Large and elongated particles show a greater tendency for fracture in the unmodified and modified conditions. Particle orientation plays an important role on fracture and the cracks are found to occur almost in a direction normal to the tensile strain imposed upon the particles by the deforming matrix in the unmodified alloy. The modified alloy shows a random distribution of fractured particles and crack orientation. The criteria of fracture based on dislocation pile-up mechanism and fiber loading explain the observed difference in particle fracture characteristics due to modification. The particle fracture for the modified alloy is also discussed in terms of Weibull statistics and the existing models of dispersion hardening. Particle/matrix interface decohesion is observed at higher strain rates and temperatures in the modified alloy. Dendritic rotation of 10 degrees is also observed at higher strain rates, which can increase the amount of particle fracture. (C) 2013 Elsevier B.V. All rights reserved.