7 resultados para Music and morals.
em Indian Institute of Science - Bangalore - Índia
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
The tonic is a fundamental concept in Indian art music. It is the base pitch, which an artist chooses in order to construct the melodies during a rg(a) rendition, and all accompanying instruments are tuned using the tonic pitch. Consequently, tonic identification is a fundamental task for most computational analyses of Indian art music, such as intonation analysis, melodic motif analysis and rg recognition. In this paper we review existing approaches for tonic identification in Indian art music and evaluate them on six diverse datasets for a thorough comparison and analysis. We study the performance of each method in different contexts such as the presence/absence of additional metadata, the quality of audio data, the duration of audio data, music tradition (Hindustani/Carnatic) and the gender of the singer (male/female). We show that the approaches that combine multi-pitch analysis with machine learning provide the best performance in most cases (90% identification accuracy on average), and are robust across the aforementioned contexts compared to the approaches based on expert knowledge. In addition, we also show that the performance of the latter can be improved when additional metadata is available to further constrain the problem. Finally, we present a detailed error analysis of each method, providing further insights into the advantages and limitations of the methods.
Resumo:
We propose a simple speech music discriminator that uses features based on HILN(Harmonics, Individual Lines and Noise) model. We have been able to test the strength of the feature set on a standard database of 66 files and get an accuracy of around 97%. We also have tested on sung queries and polyphonic music and have got very good results. The current algorithm is being used to discriminate between sung queries and played (using an instrument like flute) queries for a Query by Humming(QBH) system currently under development in the lab.
Resumo:
The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
Resumo:
Query suggestion is an important feature of the search engine with the explosive and diverse growth of web contents. Different kind of suggestions like query, image, movies, music and book etc. are used every day. Various types of data sources are used for the suggestions. If we model the data into various kinds of graphs then we can build a general method for any suggestions. In this paper, we have proposed a general method for query suggestion by combining two graphs: (1) query click graph which captures the relationship between queries frequently clicked on common URLs and (2) query text similarity graph which finds the similarity between two queries using Jaccard similarity. The proposed method provides literally as well as semantically relevant queries for users' need. Simulation results show that the proposed algorithm outperforms heat diffusion method by providing more number of relevant queries. It can be used for recommendation tasks like query, image, and product suggestion.
Resumo:
In the past few years there have been attempts to develop subspace methods for DoA (direction of arrival) estimation using a fourth?order cumulant which is known to de?emphasize Gaussian background noise. To gauge the relative performance of the cumulant MUSIC (MUltiple SIgnal Classification) (c?MUSIC) and the standard MUSIC, based on the covariance function, an extensive numerical study has been carried out, where a narrow?band signal source has been considered and Gaussian noise sources, which produce a spatially correlated background noise, have been distributed. These simulations indicate that, even though the cumulant approach is capable of de?emphasizing the Gaussian noise, both bias and variance of the DoA estimates are higher than those for MUSIC. To achieve comparable results the cumulant approach requires much larger data, three to ten times that for MUSIC, depending upon the number of sources and how close they are. This is attributed to the fact that in the estimation of the cumulant, an average of a product of four random variables is needed to make an evaluation. Therefore, compared to those in the evaluation of the covariance function, there are more cross terms which do not go to zero unless the data length is very large. It is felt that these cross terms contribute to the large bias and variance observed in c?MUSIC. However, the ability to de?emphasize Gaussian noise, white or colored, is of great significance since the standard MUSIC fails when there is colored background noise. Through simulation it is shown that c?MUSIC does yield good results, but only at the cost of more data.