17 resultados para Music Producer
em Indian Institute of Science - Bangalore - Índia
Resumo:
The problem of automatic melody line identification in a MIDI file plays an important role towards taking QBH systems to the next level. We present here, a novel algorithm to identify the melody line in a polyphonic MIDI file. A note pruning and track/channel ranking method is used to identify the melody line. We use results from musicology to derive certain simple heuristics for the note pruning stage. This helps in the robustness of the algorithm, by way of discarding "spurious" notes. A ranking based on the melodic information in each track/channel enables us to choose the melody line accurately. Our algorithm makes no assumption about MIDI performer specific parameters, is simple and achieves an accuracy of 97% in identifying the melody line correctly. This algorithm is currently being used by us in a QBH system built in our lab.
Resumo:
We propose a simple speech music discriminator that uses features based on HILN(Harmonics, Individual Lines and Noise) model. We have been able to test the strength of the feature set on a standard database of 66 files and get an accuracy of around 97%. We also have tested on sung queries and polyphonic music and have got very good results. The current algorithm is being used to discriminate between sung queries and played (using an instrument like flute) queries for a Query by Humming(QBH) system currently under development in the lab.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
We analyze the AlApana of a Carnatic music piece without the prior knowledge of the singer or the rAga. AlApana is ameans to communicate to the audience, the flavor or the bhAva of the rAga through the permitted notes and its phrases. The input to our analysis is a recording of the vocal AlApana along with the accompanying instrument. The AdhAra shadja(base note) of the singer for that AlApana is estimated through a stochastic model of note frequencies. Based on the shadja, we identify the notes (swaras) used in the AlApana using a semi-continuous GMM. Using the probabilities of each note interval, we recognize swaras of the AlApana. For sampurNa rAgas, we can identify the possible rAga, based on the swaras. We have been able to achieve correct shadja identification, which is crucial to all further steps, in 88.8% of 55 AlApanas. Among them (48 AlApanas of 7 rAgas), we get 91.5% correct swara identification and 62.13% correct R (rAga) accuracy.
Resumo:
This article presents the studies conducted on turbocharged producer gas engines designed originally for natural gas (NG) as the fuel. Producer gas, whose properties like stoichiometric ratio, calorific value, laminar flame speed, adiabatic flame temperature, and related parameters that differ from those of NG, is used as the fuel. Two engines having similar turbochargers are evaluated for performance. Detailed measurements on the mass flowrates of fuel and air, pressures and temperatures at various locations on the turbocharger were carried out. On both the engines, the pressure ratio across the compressor was measured to be 1.40 +/- 0.05 and the density ratio to be 1.35 +/- 0.05 across the turbocharger with after-cooler. Thermodynamic analysis of the data on both the engines suggests a compressor efficiency of 70 per cent. The specific energy consumption at the peak load is found to be 13.1 MJ/kWh with producer gas as the fuel. Compared with the naturally aspirated mode, the mass flow and the peak load in the turbocharged after-cooled condition increased by 35 per cent and 30 per cent, respectively. The pressure ratios obtained with the use of NG and producer gas are compared with corrected mass flow on the compressor map.
Resumo:
This article addresses the adaptation of a low-power natural gas engine for using producer gas as a fuel. The 5.9 L natural gas engine with a compression ratio of 10.5:1, rated at 55 kW shaft power, delivered 30 kW using producer gas as fuel in the naturally aspirated mode. Optimal ignition timing for peak power was found to be 20 degrees before top dead centre. Air-to-fuel ratio (A/F) was found to be 1.2 +/- 0.1 over a range of loads. Critical evaluation of the energy flows in the engine resulted in identifying losses and optimizing the engine cooling. The specific fuel consumption was found to be 1.2 +/- 0.1 kg of biomass per kilowatt hour. A reduction of 40 per cent in brake mean effective pressure was observed compared with natural gas operation. Governor response to load variations has been studied with respect to frequency recovery time. The study also attempts to adopt a turbocharger for higher power output. Preliminary results suggest a possibility of about 30 per cent increase in the output.
Resumo:
Compressive Sensing (CS) is a new sensing paradigm which permits sampling of a signal at its intrinsic information rate which could be much lower than Nyquist rate, while guaranteeing good quality reconstruction for signals sparse in a linear transform domain. We explore the application of CS formulation to music signals. Since music signals comprise of both tonal and transient nature, we examine several transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT), Fourier basis and also non-orthogonal warped transforms to explore the effectiveness of CS theory and the reconstruction algorithms. We show that for a given sparsity level, DCT, overcomplete, and warped Fourier dictionaries result in better reconstruction, and warped Fourier dictionary gives perceptually better reconstruction. “MUSHRA” test results show that a moderate quality reconstruction is possible with about half the Nyquist sampling.
Resumo:
The paper addresses experiments and modeling studies on the use of producer gas, a bio-derived low energy content fuel in a spark-ignited engine. Producer gas, generated in situ, has thermo-physical properties different from those of fossil fuel(s). Experiments on naturally aspirated and turbo-charged engine operation and subsequent analysis of the cylinder pressure traces reveal significant differences in the heat release pattern within the cylinder compared with a typical fossil fuel. The heat release patterns for gasoline and producer gas compare well in the initial 50% but beyond this, producer gas combustion tends to be sluggish leading to an overall increase in the combustion duration. This is rather unexpected considering that producer gas with nearly 20% hydrogen has higher flame speeds than gasoline. The influence of hydrogen on the initial flame kernel development period and the combustion duration and hence on the overall heat release pattern is addressed. The significant deviations in the heat release profiles between conventional fuels and producer gas necessitates the estimation of producer gas-specific Wiebe coefficients. The experimental heat release profiles are used for estimating the Wiebe coefficients. Experimental evidence of lower fuel conversion efficiency based on the chemical and thermal analysis of the engine exhaust gas is used to arrive at the Wiebe coefficients. The efficiency factor a is found to be 2.4 while the shape factor m is estimated at 0.7 for 2% to 90% burn duration. The standard Wiebe coefficients for conventional fuels and fuel-specific coefficients for producer gas are used in a zero D model to predict the performance of a 6-cylinder gas engine under naturally aspirated and turbo-charged conditions. While simulation results with standard Wiebe coefficients result in excessive deviations from the experimental results, excellent match is observed when producer gas-specific coefficients are used. Predictions using the same coefficients on a 3-cylinder gas engine having different geometry and compression ratio(s) indicate close match with the experimental traces highlighting the versatility of the coefficients.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
We address the problem of multi-instrument recognition in polyphonic music signals. Individual instruments are modeled within a stochastic framework using Student's-t Mixture Models (tMMs). We impose a mixture of these instrument models on the polyphonic signal model. No a priori knowledge is assumed about the number of instruments in the polyphony. The mixture weights are estimated in a latent variable framework from the polyphonic data using an Expectation Maximization (EM) algorithm, derived for the proposed approach. The weights are shown to indicate instrument activity. The output of the algorithm is an Instrument Activity Graph (IAG), using which, it is possible to find out the instruments that are active at a given time. An average F-ratio of 0 : 7 5 is obtained for polyphonies containing 2-5 instruments, on a experimental test set of 8 instruments: clarinet, flute, guitar, harp, mandolin, piano, trombone and violin.
Resumo:
The current work addresses the use of producer gas, a bio-derived gaseous alternative fuel, in engines designed for natural gas, derived from diesel engine frames. Impact of the use of producer gas on the general engine performance with specific focus on turbo-charging is addressed. The operation of a particular engine frame with diesel, natural gas and producer gas indicates that the peak load achieved is highest with diesel fuel (in compression ignition mode) followed by natural gas and producer gas (both in spark ignite mode). Detailed analysis of the engine power de-rating on fuelling with natural gas and producer gas indicates that the change in compression ratio (migration from compression to spark ignited mode), difference in mixture calorific value and turbocharger mismatch are the primary contributing factors. The largest de-rating occurs due to turbocharger mismatch. Turbocharger selection and optimization is identified as the strategy to recover the non-thermodynamic power loss, identified as the recovery potential (the loss due to mixture calorific value and turbocharger mismatch) on operating the engine with a fuel different from the base fuel. A turbocharged after-cooled six cylinder, 5.9 l, 90 kWe (diesel rating) engine (12.2 bar BMEP) is available commercially as a naturally aspirated natural gas engine delivering a peak load of 44.0 kWe (6.0 bar BMEP). The engine delivers a load of 27.3 kWe with producer gas under naturally aspirated mode. On charge boosting the engine with a turbocharger similar in configuration to the diesel engine turbocharger, the peak load delivered with producer gas is 36 kWe (4.8 bar BMEP) indicating a de-rating of about 60% over the baseline diesel mode. Estimation of knock limited peak load for producer gas-fuelled operation on the engine frame using a Wiebe function-based zero-dimensional code indicates a knock limited peak load of 76 kWe, indicating the potential to recover about 40 kWe. As a part of the recovery strategy, optimizing the ignition timing for maximum brake torque based on both spark sweep tests and established combustion descriptors and engine-turbocharger matching for producer gas-fuelled operation resulted in a knock limited peak load of 72.8 kWe (9.9 bar BMEP) at a compressor pressure ratio of 2.30. The de-rating of about 17.0 kWe compared to diesel rating is attributed to the reduction in compression ratio. With load recovery, the specific biomass consumption reduces from 1.2 kg/kWh to 1.0 kg/kWh, an improvement of over 16% while the engine thermal efficiency increases from 28% to 32%. The thermodynamic analysis of the compressor and the turbine indicates an isentropic efficiency of 74.5% and 73%, respectively.
Resumo:
The tonic is a fundamental concept in Indian art music. It is the base pitch, which an artist chooses in order to construct the melodies during a rg(a) rendition, and all accompanying instruments are tuned using the tonic pitch. Consequently, tonic identification is a fundamental task for most computational analyses of Indian art music, such as intonation analysis, melodic motif analysis and rg recognition. In this paper we review existing approaches for tonic identification in Indian art music and evaluate them on six diverse datasets for a thorough comparison and analysis. We study the performance of each method in different contexts such as the presence/absence of additional metadata, the quality of audio data, the duration of audio data, music tradition (Hindustani/Carnatic) and the gender of the singer (male/female). We show that the approaches that combine multi-pitch analysis with machine learning provide the best performance in most cases (90% identification accuracy on average), and are robust across the aforementioned contexts compared to the approaches based on expert knowledge. In addition, we also show that the performance of the latter can be improved when additional metadata is available to further constrain the problem. Finally, we present a detailed error analysis of each method, providing further insights into the advantages and limitations of the methods.