12 resultados para Music, Computation, Interactive, Visual Art
em Indian Institute of Science - Bangalore - Índia
Resumo:
Geochemical studies are performed to examine the impact of leachate infiltration from on-site sewage disposal systems on the groundwater chemistry in Mulbagal town, Kolar District, Karnataka State, India. The leachate infiltration imposed nitrate concentrations ranging from 4 mg/L to 388 mg/L in the groundwater samples; it was observed that 79% of the samples exhibited nitrate concentrations in excess of drinking water permissible limit (45 mg/L). The average (of 43 measurements) E. coli levels in the groundwater samples corresponded to 189 MPN/100 mL and 55% of the samples tested exhibit pathogen contamination. Results also showed that the groundwater in the study area is characterized by acidic pH, large calcium + magnesium ion and Na/Cl ratios of < unity causing majority of the ground water samples to classify as Ca-Mg-Cl type and Na-Cl type. Saturation index (SI) computation using Visual MINTEQ program showed that the groundwater samples are under-saturated with respect to calcite. The theoretical SI values (of calcite) however suggested that the groundwater samples ought to be over-saturated with calcite. Under-saturation of the groundwater samples with calcite is attributed to increased dissolution of the mineral in the acidic environment of the groundwater.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
The tonic is a fundamental concept in Indian art music. It is the base pitch, which an artist chooses in order to construct the melodies during a rg(a) rendition, and all accompanying instruments are tuned using the tonic pitch. Consequently, tonic identification is a fundamental task for most computational analyses of Indian art music, such as intonation analysis, melodic motif analysis and rg recognition. In this paper we review existing approaches for tonic identification in Indian art music and evaluate them on six diverse datasets for a thorough comparison and analysis. We study the performance of each method in different contexts such as the presence/absence of additional metadata, the quality of audio data, the duration of audio data, music tradition (Hindustani/Carnatic) and the gender of the singer (male/female). We show that the approaches that combine multi-pitch analysis with machine learning provide the best performance in most cases (90% identification accuracy on average), and are robust across the aforementioned contexts compared to the approaches based on expert knowledge. In addition, we also show that the performance of the latter can be improved when additional metadata is available to further constrain the problem. Finally, we present a detailed error analysis of each method, providing further insights into the advantages and limitations of the methods.
Resumo:
We provide a new unified framework, called "multiple correlated informants - single recipient" communication, to address the variations of the traditional Distributed Source Coding (DSC) problem. Different combinations of the assumptions about the communication scenarios and the objectives of communication result in different variations of the DSC problem. For each of these variations, the complexities of communication and computation of the optimal solution is determined by the combination of the underlying assumptions. In the proposed framework, we address the asymmetric, interactive, and lossless variant of the DSC problem, with various objectives of communication and provide optimal solutions for those. Also, we consider both, the worst-case and average-case scenarios.
Resumo:
We describe a real-time system that supports design of optimal flight paths over terrains. These paths either maximize view coverage or minimize vehicle exposure to ground. A volume-rendered display of multi-viewpoint visibility and a haptic interface assists the user in selecting, assessing, and refining the computed flight path. We design a three-dimensional scalar field representing the visibility of a point above the terrain, describe an efficient algorithm to compute the visibility field, and develop visual and haptic schemes to interact with the visibility field. Given the origin and destination, the desired flight path is computed using an efficient simulation of an articulated rope under the influence of the visibility gradient. The simulation framework also accepts user input, via the haptic interface, thereby allowing manual refinement of the flight path.
Resumo:
In this paper, we present a wavelet - based approach to solve the non-linear perturbation equation encountered in optical tomography. A particularly suitable data gathering geometry is used to gather a data set consisting of differential changes in intensity owing to the presence of the inhomogeneous regions. With this scheme, the unknown image, the data, as well as the weight matrix are all represented by wavelet expansions, thus yielding the representation of the original non - linear perturbation equation in the wavelet domain. The advantage in use of the non-linear perturbation equation is that there is no need to recompute the derivatives during the entire reconstruction process. Once the derivatives are computed, they are transformed into the wavelet domain. The purpose of going to the wavelet domain, is that, it has an inherent localization and de-noising property. The use of approximation coefficients, without the detail coefficients, is ideally suited for diffuse optical tomographic reconstructions, as the diffusion equation removes most of the high frequency information and the reconstruction appears low-pass filtered. We demonstrate through numerical simulations, that through solving merely the approximation coefficients one can reconstruct an image which has the same information content as the reconstruction from a non-waveletized procedure. In addition we demonstrate a better noise tolerance and much reduced computation time for reconstructions from this approach.
Resumo:
The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.
Resumo:
Digital human modeling (DHM) involves modeling of structure, form and functional capabilities of human users for ergonomics simulation. This paper presents application of geometric procedures for investigating the characteristics of human visual capabilities which are particularly important in the context mentioned above. Using the cone of unrestricted directions through the pupil on a tessellated head model as the geometric interpretation of the clinical field-of-view (FoV), the results obtained are experimentally validated. Estimating the pupil movement for a given gaze direction using Listing's Law, FoVs are re-computed. Significant variation of the FoV is observed with the variation in gaze direction. A novel cube-grid representation, which integrated the unit-cube representation of directions and the enhanced slice representation has been introduced for fast and exact point classification for point visibility analysis for a given FoV. Computation of containment frequency of every grid-cell for a given set of FoVs enabled determination of percentile-based FoV contours for estimating the visual performance of a given population. This is a new concept which makes visibility analysis more meaningful from ergonomics point-of-view. The algorithms are fast enough to support interactive analysis of reasonably complex scenes on a typical desktop computer. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.
Resumo:
Designing a robust algorithm for visual object tracking has been a challenging task since many years. There are trackers in the literature that are reasonably accurate for many tracking scenarios but most of them are computationally expensive. This narrows down their applicability as many tracking applications demand real time response. In this paper, we present a tracker based on random ferns. Tracking is posed as a classification problem and classification is done using ferns. We used ferns as they rely on binary features and are extremely fast at both training and classification as compared to other classification algorithms. Our experiments show that the proposed tracker performs well on some of the most challenging tracking datasets and executes much faster than one of the state-of-the-art trackers, without much difference in tracking accuracy.
Resumo:
Background: Understanding channel structures that lead to active sites or traverse the molecule is important in the study of molecular functions such as ion, ligand, and small molecule transport. Efficient methods for extracting, storing, and analyzing protein channels are required to support such studies. Further, there is a need for an integrated framework that supports computation of the channels, interactive exploration of their structure, and detailed visual analysis of their properties. Results: We describe a method for molecular channel extraction based on the alpha complex representation. The method computes geometrically feasible channels, stores both the volume occupied by the channel and its centerline in a unified representation, and reports significant channels. The representation also supports efficient computation of channel profiles that help understand channel properties. We describe methods for effective visualization of the channels and their profiles. These methods and the visual analysis framework are implemented in a software tool, CHEXVIS. We apply the method on a number of known channel containing proteins to extract pore features. Results from these experiments on several proteins show that CHEXVIS performance is comparable to, and in some cases, better than existing channel extraction techniques. Using several case studies, we demonstrate how CHEXVIS can be used to study channels, extract their properties and gain insights into molecular function. Conclusion: CHEXVIS supports the visual exploration of multiple channels together with their geometric and physico-chemical properties thereby enabling the understanding of the basic biology of transport through protein channels. The CHEXVIS web-server is freely available at http://vgl.serc.iisc.ernet.in/chexvis/. The web-server is supported on all modern browsers with latest Java plug-in.
Resumo:
Signals recorded from the brain often show rhythmic patterns at different frequencies, which are tightly coupled to the external stimuli as well as the internal state of the subject. In addition, these signals have very transient structures related to spiking or sudden onset of a stimulus, which have durations not exceeding tens of milliseconds. Further, brain signals are highly nonstationary because both behavioral state and external stimuli can change on a short time scale. It is therefore essential to study brain signals using techniques that can represent both rhythmic and transient components of the signal, something not always possible using standard signal processing techniques such as short time fourier transform, multitaper method, wavelet transform, or Hilbert transform. In this review, we describe a multiscale decomposition technique based on an over-complete dictionary called matching pursuit (MP), and show that it is able to capture both a sharp stimulus-onset transient and a sustained gamma rhythm in local field potential recorded from the primary visual cortex. We compare the performance of MP with other techniques and discuss its advantages and limitations. Data and codes for generating all time-frequency power spectra are provided.