7 resultados para Munk, SamuelMunk, SamuelSamuelMunk
em Indian Institute of Science - Bangalore - Índia
Resumo:
Fine powders comprising nanocrystallites of barium sodium niobate, Ba2NaNb5O15 (BNN) were obtained via a citrate assisted sol-gel route at a much lower temperature than that of the conventional solid-state reaction route. The phase evolution of BNN as a function of temperature was investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). DTA data followed by XRD studies confirmed the BNN formation temperature to be around 923 K. The as-synthesized powders heat-treated at 923 K/10 h attained an orthorhombic structure akin to that of the parent BNN phase. Transmission electron microscopy revealed that the nanocrystallites are associated with dislocations. The optical band gap was calculated using the Kubelka-Munk function. These nanocrystallites exhibited strong visible photoluminescence (PL) at room temperature. The PL mechanism was explained by invoking the dielectric confinement effect, defect states and generation of self-trapped excitons.
Resumo:
Giant grained (42 mu m) translucent Ba5Li2Ti2Nb8O30 ceramic was fabricated by conventional sintering technique using the powders obtained via solid state reaction route. These samples were confirmed to possess tetragonal tungsten bronze structure (P4bm) at room temperature. The scanning electron microscopy established the average grain size to be close to 20 mu m. The photoluminescence studies carried out on these ceramics indicated sharp emission bands around 433 and 578 nm at an excitation wavelength of 350 nm which were attributed to band-edge emission as the band gap was 2.76 eV determined by Kubelka-Munk function. The dielectric properties of these ceramics were studied over wide frequency range (100-1 MHz) at room temperature. The decrease in dielectric constant with frequency could be explained on the basis of Koops theory. The dielectric constant and the loss were found to decrease with increasing frequency. The Curie temperature was confirmed to be similar to 370 A degrees C based on the dielectric anomaly observed when these measurements were carried out over a temperature range of 30-500 A degrees C. This shows a deviation from Curie-Weiss behaviour and hence an indicator of the occurrence of disordering in the system, the gamma = 1.23 which confirms the diffuse ferroelectric transition. These ceramics at room temperature exhibited P-E hysteresis loops, though not well saturated akin to that of their single crystalline counterparts. These are the suitable properties for ferroelectric random access memory applications.
Resumo:
Nanocrystalline Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) powder was synthesized via the complex oxalate precursor route at a relatively low temperature (800 degrees C/5 h). The phase formation temperature of BCZT at nanoscale was confirmed by thermogravimetric (TG), differential thermal analysis (DTA) followed by X-ray powder diffraction (XRD) studies. Fourier transform infrared (FTIR) spectroscopy was carried out to confirm the complete decomposition of oxalate precursor into BCZT phase. The XRD and profile fitting revealed the coexistence of cubic and tetragonal phases and was corroborated by Raman study. Transmission electron microscopy (TEM) carried out on 800 degrees C and 1000 degrees C/5 h heat treated BCZT powder revealed the crystallite size to be in the range of 20-50 nm and 40-200 nm respectively. The optical band gap for BCZT nanocrystalline powder was obtained using Kubelka Munk function and was found to be around 3.12 +/- 0.02 eV and 3.03 +/- 0.02 eV respectively for 800 degrees C (20-50 nm) and 1000 degrees C/5 h (40-200 nm) heat treated samples. The piezoelectric properties were studied for two different crystallite sizes (30 and 70 nm) using a piezoresponse force microscope (PFM). The d(33) coefficients obtained for 30 nm and 70 nm sized crystallites were 4 pm V-1 and 47 pm V-1 respectively. These were superior to that of BaTiO3 nanocrystal (approximate to 50 nm) and promising from a technological/industrial applications viewpoint.
Resumo:
We report, for the first time, the photoluminescence properties of Eu3+-doped LiNa3P2O7 phosphor, synthesized by a facile solid-state reaction method in air atmosphere. The crystal structure and phase purity of the phosphors were analyzed by X-ray diffraction analysis. Orthorhombic structural morphology was identified by scanning electron microscopy. The phosphate groups in the phosphor were confirmed by Fourier transform infrared analysis. Bandgap of the phosphor was calculated from the diffuse reflectance spectra data using Kubelka-Munk function. Under 395-nm UV excitation, the phosphors show signs of emitting red color due to the D-5(0) -> F-7(2) transition. In accordance with Judd-Ofelt theory, spectroscopic parameters such as oscillator intensity parameter Omega(t) (t = 2), spontaneous emission probabilities, fluorescence branching ratios and radiative lifetimes were calculated and analyzed for the first time in this system.
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.
Resumo:
Nanocrystalline powders of Ba1-xMgxZr0.1Ti0.9O3 (x = 0.025-0.1) were synthesized via citrate assisted sol-gel method. Interestingly, the one with x = 0.05 in the system Ba1-xMgxZr0.1Ti0.9O3 exhibited fairly good piezoelectric response aside from the other physical properties. The phase and structural confirmation of synthesized powder was established by X-ray powder diffraction (XRD) and Raman Spectroscopic techniques. Two distinct Raman bands i.e., 303 and 723 cm(-1) characteristic of tetragonal phase were observed. Thermogravimetric analysis (TGA) was performed to evaluate the phase decomposition of the as-synthesized Ba0.95Mg0.05Zr0.1Ti0.9O3 sample as a function of temperature. The average crystallite size associated with Ba0.95Mg0.05Zr0.1Ti0.9O3 was calculated using Scherrer formula based on the XRD data and was found to be 25 nm. However, Scanning and Transmission Electron Microscopy studies revealed the average crystallite size to be in the range of 30-40 nm, respectively. Kubelka-Munk function was employed to determine the optical band gap of these nanocrystallites. A piezoelectric response of 26 pm/V was observed for Ba0.95Mg0.05Zr0.1Ti0.9O3 nanocrystal by Piezoresponse Force Microscopy (PFM) technique. Photoluminescence (PL) study carried out on these nanocrystals exhibited a blue emission (470 nm) at room temperature.