21 resultados para Municipal plans
em Indian Institute of Science - Bangalore - Índia
Resumo:
The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.
Resumo:
A constitutive model is proposed to describe the stress-strain behavior of municipal solid waste (MSW) under loading using the critical state soil mechanics framework. The modified cam clay model is extended to incorporate the effects of mechanical creep and time dependent biodegradation to calculate total compression under loading. Model parameters are evaluated based on one-dimensional compression and triaxial consolidated undrained test series conducted on three types of MSW: (a) fresh MSW obtained from working phase of a landfill, (b) landfilled waste retrieved from a landfill after 1.5 years of degradation, and (c) synthetic MSW with controlled composition. The model captures the stress-strain and pore water pressure response of these three types of MSW adequately. The model is useful for assessing the deformation and stability of landfills and any post-closure development structures located on landfills.
Resumo:
Fermentable components of municipal solid wastes (MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash and paper are generated in large quantities at various pockets of the city. These form potential feedstocks for decentralized biogas plants to be operated in the vicinity. We characterized the fermentation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using the solid-state stratified bed (SSB) process in a laboratory study. FVW and leaf litter (papermulberry leaves) decomposed almost completely while paddy straw, sugarcane trash, sugarcane bagasse and photocopying paper decomposed to a lower extent. In the SSB process between 50-60% of the biological methane potential (BMP) could be realized. Observations revealed that the SSB process needs to be adapted differently for each of the feedstocks to obtain a higher gas recovery. Bagasse produced the largest fraction of anaerobic compost (fermentation residue) and has the potential for reuse in many ways.
Resumo:
Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.
Resumo:
Estimates of predicate selectivities by database query optimizers often differ significantly from those actually encountered during query execution, leading to poor plan choices and inflated response times. In this paper, we investigate mitigating this problem by replacing selectivity error-sensitive plan choices with alternative plans that provide robust performance. Our approach is based on the recent observation that even the complex and dense "plan diagrams" associated with industrial-strength optimizers can be efficiently reduced to "anorexic" equivalents featuring only a few plans, without materially impacting query processing quality. Extensive experimentation with a rich set of TPC-H and TPC-DS-based query templates in a variety of database environments indicate that plan diagram reduction typically retains plans that are substantially resistant to selectivity errors on the base relations. However, it can sometimes also be severely counter-productive, with the replacements performing much worse. We address this problem through a generalized mathematical characterization of plan cost behavior over the parameter space, which lends itself to efficient criteria of when it is safe to reduce. Our strategies are fully non-invasive and have been implemented in the Picasso optimizer visualization tool.
Resumo:
The management of municipal solid waste has become an acute problem due to enhanced economic activities and rapid urbanisation. Increased attention has been given by the government in recent years to handle this problem in a safe and hygienic manner. In this regard, Municipal Solid Waste Management (MSWM) environmental audit has been carried out for Bangalore city through the collection of secondary data from government agencies, and interviews with stakeholders and field surveys. Field surveys were carried out in seven wards (representative samples of the city) to understand the practice and identify the lacunae. The MSWM audit that was carried out functional-element-wise in selected wards to understand the efficacy and shortfalls, if any, is discussed in this paper.
Resumo:
Solid material thrown away as unused from various sectors such as agricultural, commercial, domestic, industrial and institutional constitutes solid wastes. This places an enormous strain on natural resources and seriously undermines efficient and sustainable development. Management of Municipal Solid Waste discusses the ways to salvage the situation through efficient management of solid wastes from waste generation to final disposal. The various processes such as waste generation, collection, storage, processing, recovery, transport, and disposal, are explained with the support of case studies. The book discusses reduction of waste at the source and to foster implementation of integrated solid waste management systems that are cost-effective and protect human health and the environment.
Resumo:
Accumulator models that integrate incoming sensory information into motor plans provide a robust framework to understand decision making. However, their applicability to situations that demand a change of plan raises an interesting problem for the brain. This is because interruption of the current motor plan must occur by a competing motor plan, which is necessarily weaker in strength. To understand how changes of mind get expressed in behavior, we used a version of the double-step task called the redirect task, in which monkeys were trained to modify a saccade plan. We microstimulated the frontal eye fields during redirect behavior and systematically measured the deviation of the evoked saccade from the response field to causally track the changing saccade plan. Further, to identify the underlying mechanisms, eight different computational models of redirect behavior were assessed. It was observed that the model that included an independent, spatially specific inhibitory process, in addition to the two accumulators representing the preparatory processes of initial and final motor plans, best predicted the performance and the pattern of saccade deviation profile in the task. Such an inhibitory process suppressed the preparation of the initial motor plan, allowing the final motor plan to proceed unhindered. Thus, changes of mind are consistent with the notion of a spatially specific, inhibitory process that inhibits the current inappropriate plan, allowing expression of the new plan.
Resumo:
How the brain converts parallel representations of movement goals into sequential movements is not known. We tested the role of basal ganglia (BG) in the temporal control of movement sequences by a convergent approach involving inactivation of the BG by muscimol injections into the caudate nucleus of monkeys and assessing behavior of Parkinson's disease patients, performing a modified double-step saccade task. We tested a critical prediction of a class of competitive queuing models that explains serial behavior as the outcome of a selection of concurrently activated goals. In congruence with these models, we found that inactivation or impairment of the BG unmasked the parallel nature of goal representations such that a significantly greater extent of averaged saccades, curved saccades, and saccade sequence errors were observed. These results suggest that the BG perform a form of competitive queuing, holding the second movement plan in abeyance while the first movement is being executed, allowing the proper temporal control of movement sequences.
Resumo:
Algae biofuel have emerged as viable renewable energy sources and are the potential alternatives to fossil-based fuels in recent times. Algae have the potential to generate significant quantities of commercially viable biofuel apart from treating wastewater. Three algal species, viz. Chlorococcum sp., Microcystis sp. and Phormidium sp. proliferating in wastewater ponds were isolated and cultured in the laboratory myxotrophically under similar wastewater conditions. Chlorococcum sp. attained a mean biomass productivity of 0.09 g. I(-1)d(-1) with the maximum `biomass density of 1.33 g I-1 and comparatively higher lipid content of 30.55% (w/w) on the ninth day of the culture experiment. Under similar conditions Microcystis sp. and Phormidium sp. attained mean biomass productivities of 0.058 and 0.063 g I-1 d(-1) with a total lipid content of 8.88% and 18.66% respectively. Biochemical composition (carbohydrates, proteins, lipids and phosphates) variations and lipid accumulation studies were performed by comparison of the ratios of carbohydrate to protein; lipid to protein (L/P) and lipid to phosphates using attenuated total reflectance-Fourier transform infrared spectroscopy which showed higher L/P ratio during the stationary phase of algal growth. Composition analysis of fatty acid methyl ester has been performed using gas chromatography and mass spectrometry. Chlorococcum sp. with higher productivity and faster growth rate has higher lipid content with about 67% of saturated fatty acid dominated by palmitate (36.3%) followed by an unsaturate as linoleate (14%) and has proved to be an economical and viable feedstock for biofuel production compared to the other wastewater-grown species.
Resumo:
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The current study analyzes the leachate distribution in the Orchard Hills Landfill, Davis Junction, Illinois, using a two-phase flow model to assess the influence of variability in hydraulic conductivity on the effectiveness of the existing leachate recirculation system and its operations through reliability analysis. Numerical modeling, using finite-difference code, is performed with due consideration to the spatial variation of hydraulic conductivity of the municipal solid waste (MSW). The inhomogeneous and anisotropic waste condition is assumed because it is a more realistic representation of the MSW. For the reliability analysis, the landfill is divided into 10 MSW layers with different mean values of vertical and horizontal hydraulic conductivities (decreasing from top to bottom), and the parametric study is performed by taking the coefficients of variation (COVs) as 50, 100, 150, and 200%. Monte Carlo simulations are performed to obtain statistical information (mean and COV) of output parameters of the (1) wetted area of the MSW, (2) maximum induced pore pressure, and (3) leachate outflow. The results of the reliability analysis are used to determine the influence of hydraulic conductivity on the effectiveness of the leachate recirculation and are discussed in the light of a deterministic approach. The study is useful in understanding the efficiency of the leachate recirculation system. (C) 2013 American Society of Civil Engineers.