20 resultados para Multivalued Mappings
em Indian Institute of Science - Bangalore - Índia
Resumo:
Computation of the dependency basis is the fundamental step in solving the membership problem for functional dependencies (FDs) and multivalued dependencies (MVDs) in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of a dependency-lattice and develop an algebraic characterization of inference basis using simple notions from lattice theory. We also establish several interesting properties of dependency-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a): computing the inference basis of a given set M of MVDs; (b): computing the dependency basis of a given attribute set w.r.t. M; and (c): solving the membership problem for MVDs. We also show that our results naturally extend to incorporate FDs also in a way that enables the solution of the membership problem for both FDs and MVDs put together. We finally show that our algorithms are more efficient than existing ones, when used to solve what we term the ‘generalized membership problem’.
Resumo:
Computation of the dependency basis is the fundamental step in solving the implication problem for MVDs in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of an MVD-lattice and develop an algebraic characterization of the inference basis using simple notions from lattice theory. We also establish several properties of MVD-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a) computing the inference basis of a given set M of MVDs; (b) computing the dependency basis of a given attribute set w.r.t. M; and (c) solving the implication problem for MVDs. Finally, we show that our results naturally extend to incorporate FDs also in a way that enables the solution of the implication problem for both FDs and MVDs put together.
Resumo:
Sets of multivalued dependencies (MVDs) having conflict-free covers are important to the theory and design of relational databases [2,12,15,16]. Their desirable properties motivate the problem of testing a set M of MVDs for the existence of a confiict-free cover. In [8] Goodman and Tay have proposed an approach based on the possible equivalence of M to a single (acyclic) join dependency (JD). We remark that their characterization does not lend an insight into the nature of such sets of MVDs. Here, we use notions that are intrinsic to MVDs to develop a new characterization. Our approach proceeds in two stages. In the first stage, we use the notion of “split-free” sets of MVDs and obtain a characterization of sets M of MVDs having split-free covers. In the second, we use the notion of “intersection” of MVDs to arrive at a necessary and sufficient condition for a split-free set of MVDs to be conflict-free. Based on our characterizations, we also give polynomial-time algorithms for testing whether M has split-free and conflict-free covers. The highlight of our approach is the clear insight it provides into the nature of sets of MVDs having conflict-free covers. Less emphasis is given in this paper to the actual efficiency of the algorthms. Finally, as a bonus, we derive a desirable property of split-free sets of MVDs,thereby showing that they are interesting in their own right.
Resumo:
Canonical forms for m-valued functions referred to as m-Reed-Muller canonical (m-RMC) forms that are a generalization of RMC forms of two-valued functions are proposed. m-RMC forms are based on the operations ?m (addition mod m) and .m (multiplication mod m) and do not, as in the cases of the generalizations proposed in the literature, require an m-valued function for m not a power of a prime, to be expressed by a canonical form for M-valued functions, where M > m is a power of a prime. Methods of obtaining the m-RMC forms from the truth vector or the sum of products representation of an m-valued function are discussed. Using a generalization of the Boolean difference to m-valued logic, series expansions for m-valued functions are derived.
Resumo:
An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple
Resumo:
When hosting XML information on relational backends, a mapping has to be established between the schemas of the information source and the target storage repositories. A rich body of recent literature exists for mapping isolated components of XML Schema to their relational counterparts, especially with regard to table configurations. In this paper, we present the Elixir system for designing industrial-strength mappings for real-world applications. Specifically, it produces an information-preserving holistic mapping that transforms the complete XML world-view (XML schema with constraints, XML documents XQuery queries including triggers and views) into a full-scale relational mapping (table definitions, integrity constraints, indices, triggers and views) that is tuned to the application workload. A key design feature of Elixir is that it performs all its mapping-related optimizations in the XML source space, rather than in the relational target space. Further, unlike the XML mapping tools of commercial database systems, which rely heavily on user inputs, Elixir takes a principled cost-based approach to automatically find an efficient relational mapping. A prototype of Elixir is operational and we quantitatively demonstrate its functionality and efficacy on a variety of real-life XML schemas.
Resumo:
An extension theorem for holomorphic mappings between two domains in C-2 is proved under purely local hypotheses.
Resumo:
The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.
Resumo:
We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.
Resumo:
We extend a well-known result, about the unit ball, by H. Alexander to a class of balanced domains in . Specifically: we prove that any proper holomorphic self-map of a certain type of balanced, finite-type domain in , is an automorphism. The main novelty of our proof is the use of a recent result of Opshtein on the behaviour of the iterates of holomorphic self-maps of a certain class of domains. We use Opshtein's theorem, together with the tools made available by finiteness of type, to deduce that the aforementioned map is unbranched. The monodromy theorem then delivers the result.
Resumo:
It is well known that the notions of normal forms and acyclicity capture many practical desirable properties for database schemes. The basic schema design problem is to develop design methodologies that strive toward these ideals. The usual approach is to first normalize the database scheme as far as possible. If the resulting scheme is cyclic, then one tries to transform it into an acyclic scheme. In this paper, we argue in favor of carrying out these two phases of design concurrently. In order to do this efficiently, we need to be able to incrementally analyze the acyclicity status of a database scheme as it is being designed. To this end, we propose the formalism of "binary decompositions". Using this, we characterize design sequences that exactly generate theta-acyclic schemes, for theta = agr,beta. We then show how our results can be put to use in database design. Finally, we also show that our formalism above can be effectively used as a proof tool in dependency theory. We demonstrate its power by showing that it leads to a significant simplification of the proofs of some previous results connecting sets of multivalued dependencies and acyclic join dependencies.
Resumo:
A new generalisation of Einstein’s theory is proposed which is invariant under conformal mappings. Two scalar fields are introduced in addition to the metric tensor field, so that two special choices of gauge are available for physical interpretation, the ‘Einstein gauge’ and the ‘atomic gauge’. The theory is not unique but contains two adjustable parameters ζ anda. Witha=1 the theory viewed from the atomic gauge is Brans-Dicke theory (ω=−3/2+ζ/4). Any other choice ofa leads to a creation-field theory. In particular the theory given by the choicea=−3 possesses a cosmological solution satisfying Dirac’s ‘large numbers’ hypothesis.
Resumo:
A fundamental task in bioinformatics involves a transfer of knowledge from one protein molecule onto another by way of recognizing similarities. Such similarities are obtained at different levels, that of sequence, whole fold, or important substructures. Comparison of binding sites is important to understand functional similarities among the proteins and also to understand drug cross-reactivities. Current methods in literature have their own merits and demerits, warranting exploration of newer concepts and algorithms, especially for large-scale comparisons and for obtaining accurate residue-wise mappings. Here, we report the development of a new algorithm, PocketAlign, for obtaining structural superpositions of binding sites. The software is available as a web-service at http://proline.physicslisc.emetin/pocketalign/. The algorithm encodes shape descriptors in the form of geometric perspectives, supplemented by chemical group classification. The shape descriptor considers several perspectives with each residue as the focus and captures relative distribution of residues around it in a given site. Residue-wise pairings are computed by comparing the set of perspectives of the first site with that of the second, followed by a greedy approach that incrementally combines residue pairings into a mapping. The mappings in different frames are then evaluated by different metrics encoding the extent of alignment of individual geometric perspectives. Different initial seed alignments are computed, each subsequently extended by detecting consequential atomic alignments in a three-dimensional grid, and the best 500 stored in a database. Alignments are then ranked, and the top scoring alignments reported, which are then streamed into Pymol for visualization and analyses. The method is validated for accuracy and sensitivity and benchmarked against existing methods. An advantage of PocketAlign, as compared to some of the existing tools available for binding site comparison in literature, is that it explores different schemes for identifying an alignment thus has a better potential to capture similarities in ligand recognition abilities. PocketAlign, by finding a detailed alignment of a pair of sites, provides insights as to why two sites are similar and which set of residues and atoms contribute to the similarity.
Resumo:
This article considers C-1-smooth isometries of the Kobayashi and Caratheodory metrics on domains in C-n and the extent to which they behave like holomorphic mappings. First we provide an example which suggests that B-n cannot be mapped isometrically onto a product domain. In addition, we prove several results on continuous extension of C-0-isometries f : D-1 -> D-2 to the closures under purely local assumptions on the boundaries. As an application, we show that there is no C-0-isometry between a strongly pseudoconvex domain in C-2 and certain classes of weakly pseudoconvex finite type domains in C-2.
Resumo:
We examine the large-order behavior of a recently proposed renormalization-group-improved expansion of the Adler function in perturbative QCD, which sums in an analytically closed form the leading logarithms accessible from renormalization-group invariance. The expansion is first written as an effective series in powers of the one-loop coupling, and its leading singularities in the Borel plane are shown to be identical to those of the standard ``contour-improved'' expansion. Applying the technique of conformal mappings for the analytic continuation in the Borel plane, we define a class of improved expansions, which implement both the renormalization-group invariance and the knowledge about the large-order behavior of the series. Detailed numerical studies of specific models for the Adler function indicate that the new expansions have remarkable convergence properties up to high orders. Using these expansions for the determination of the strong coupling from the hadronic width of the tau lepton we obtain, with a conservative estimate of the uncertainty due to the nonperturbative corrections, alpha(s)(M-tau(2)) = 0.3189(-0.0151)(+0.0173), which translates to alpha(s)(M-Z(2)) = 0.1184(-0.0018)(+0.0021). DOI: 10.1103/PhysRevD.87.014008