5 resultados para Motorcycle crashes

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the steady turn behaviours of some light motorcycle models on circular paths, using the commercial software package ADAMS-Motorcycle. Steering torque and steering angle are obtained for several path radii and a range of steady forward speeds. For path radii much greater than motorcycle wheelbase, and for all motorcycle parameters including tyre parameters held fixed, dimensional analysis can predict the asymptotic behaviour of steering torque and angle. In particular, steering torque is a function purely of lateral acceleration plus another such function divided by path radius. Of these, the first function is numerically determined, while the second is approximated by an analytically determined constant. Similarly, the steering angle is a function purely of lateral acceleration, plus another such function divided by path radius. Of these, the first is determined numerically while the second is determined analytically. Both predictions are verified through ADAMS simulations for various tyre and geometric parameters. In summary, steady circular motions of a given motorcycle with given tyre parameters can be approximately characterised by just one curve for steering torque and one for steering angle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the last decade, developing countries such as India have been exhibiting rapid increase in human population and vehicles, and increase in road accidents. Inappropriate driving behaviour is considered one of the major causes of road accidents in India as compared to defective geometric design of pavement or mechanical defects in vehicles. It can result in conditions such as lack of lane discipline, disregard to traffic laws, frequent traffic violations, increase in crashes due to self-centred driving, etc. It also demotivates educated drivers from following good driving practices. Hence, improved driver behaviour can be an effective countermeasure to reduce the vulnerability of road users and inhibit crash risks. This article highlights improved driver behaviour through better driver education, driver training and licensing procedures along with good on-road enforcement; as an effective countermeasure to ensure road safety in India. Based on the review and analysis, the article also recommends certain measures pertaining to driver licensing and traffic law enforcement in India aimed at improving road safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current paper suggests a new procedure for designing helmets for head impact protection for users such as motorcycle riders. According to the approach followed here, a helmet is mounted on a featureless Hybrid 3 headform that is used in assessing vehicles for compliance to the FMVSS 201 regulation in the USA for upper interior head impact safety. The requirement adopted in the latter standard, i.e. not exceeding a threshold HIC(d) limit of 1000, is applied in the present study as a likely criterion for adjudging the efficacy of helmets. An impact velocity of 6 m/s (13.5 mph) for the helmet-headform system striking a rigid target can probably be acceptable for ascertaining a helmet's effectiveness as a countermeasure for minimizing the risk of severe head injury. The proposed procedure is demonstrated with the help of a validated LS-DYNA model of a featureless Hybrid 3 headform in conjunction with a helmet model comprising an outer polypropylene shell to the inner surface of which is bonded a protective polyurethane foam padding of a given thickness. Based on simulation results of impact on a rigid surface, it appears that a minimum foam padding thickness of 40 mm is necessary for obtaining an acceptable value of HIC(d).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex systems inspired analysis suggests a hypothesis that financial meltdowns are abrupt critical transitions that occur when the system reaches a tipping point. Theoretical and empirical studies on climatic and ecological dynamical systems have shown that approach to tipping points is preceded by a generic phenomenon called critical slowing down, i.e. an increasingly slow response of the system to perturbations. Therefore, it has been suggested that critical slowing down may be used as an early warning signal of imminent critical transitions. Whether financial markets exhibit critical slowing down prior to meltdowns remains unclear. Here, our analysis reveals that three major US (Dow Jones Index, S&P 500 and NASDAQ) and two European markets (DAX and FTSE) did not exhibit critical slowing down prior to major financial crashes over the last century. However, all markets showed strong trends of rising variability, quantified by time series variance and spectral function at low frequencies, prior to crashes. These results suggest that financial crashes are not critical transitions that occur in the vicinity of a tipping point. Using a simple model, we argue that financial crashes are likely to be stochastic transitions which can occur even when the system is far away from the tipping point. Specifically, we show that a gradually increasing strength of stochastic perturbations may have caused to abrupt transitions in the financial markets. Broadly, our results highlight the importance of stochastically driven abrupt transitions in real world scenarios. Our study offers rising variability as a precursor of financial meltdowns albeit with a limitation that they may signal false alarms.