14 resultados para Mosquitoes as carriers of disease

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-Synuclein aggregation is centrally implicated in Parkinson's disease (PD). It involves multi-step nucleated polymerization process via the formation of dimers, soluble toxic oligomers and insoluble fibrils. In the present study, we synthesized a novel compound viz., Curcumin-glucoside (Curc-gluc), a modified form of curcumin and studied its anti-aggregating potential with alpha-synuclein. Under aggregating conditions in vitro, Curc-gluc prevents oligomer formation as well as inhibits fibril formation indicating favorable stoichiometry for inhibition. The binding efficacies of Curc-gluc to both alpha-synuclein monomeric and oligomeric forms were characterized by micro-calorimetry. It was observed that titration of Curc-gluc with alpha-synuclein monomer yielded very low heat values with low binding while, in case of oligomers, Curc-gluc showed significant binding. Addition of Curc-gluc inhibited aggregation in a dose-dependent manner and enhanced alpha-synuclein solubility, which propose that Curc-gluc solubilizes the oligomeric form by disintegrating preformed fibrils and this is a novel observation. Overall, the data suggest that Curc-gluc binds to alpha-synuclein oligomeric form and prevents further fibrillization of alpha-synuclein; this might aid the development of disease modifying agents in preventing or treating PD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell-mediated cytotoxicity against Mycobacterium tuberculosis (MTB)-infected macrophages may be a major mechanism of specific host defense, but little is known about such activities in the lung. Thus, the capacity of alveolar lymphocyte MTB-specific cell lines (AL) and alveolar macrophages (AM) from tuberculin skin test-positive healthy subjects to serve as CTL and target cells, respectively, in response to MTB (H37Ra) or purified protein derivative (PPD) was investigated. Mycobacterial Ag-pulsed AM were targets of blood CTL activity at E:T ratios of > or = 30:1 (51Cr release assay), but were significantly more resistant to cytotoxicity than autologous blood monocytes. PPD- plus IL-2-expanded AL and blood lymphocytes were cytotoxic for autologous mycobacterium-stimulated monocytes at E:T ratios of > or = 10:1. The CTL activity of lymphocytes expanded with PPD was predominantly class II MHC restricted, whereas the CTL activity of lymphocytes expanded with PPD plus IL-2 was both class I and class II MHC restricted. Both CD4+ and CD8+ T cells were enriched in BL and AL expanded with PPD and IL-2, and both subsets had mycobacterium-specific CTL activity. Such novel cytotoxic responses by CD4+ and CD8+ T cells may be a major mechanism of defense against MTB at the site of disease activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N-e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N-e similar to 10(2)-10(4), smaller than the inverse mutation rate of HIV-1 (similar to 10(5)), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N-e>10(5), suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N-e similar to 10(3)-10(4), implying predominantly stochastic evolution. Interestingly, we find that N-e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N-e>10(5) reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N-e similar to 10(3)-10(4) may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MEMS systems are technologically developed from integrated circuit industry to create miniature sensors and actuators. Originally these semiconductor processes and materials were used to build electrical and mechanical systems, but expanded to include biological, optical fluidic magnetic and other systems 12]. Here a novel approach is suggested where in two different fields are integrated via moems, micro fluidics and ring resonators. It is well known at any preliminary stage of disease onset, many physiological changes occur in the body fluids like saliva, blood, urine etc. The drawback till now was that current calibrations are not sensitive enough to detect the minor physiological changes. This is overcome using optical detector techniques 1]. The basic concepts of ring resonators, with slight variations can be used for optical detection of these minute disease markers. A well known fact of ring resonators is that a change in refractive index will trigger a shift in the resonant wavelength 5]. The trigger for the wavelength shift in the case discussed will be the presence of disease agents. To trap the disease agents specific antibody has to be used (e. g. BSA).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular understanding of disease processes can be accelerated if all interactions between the host and pathogen are known. The unavailability of experimental methods for large-scale detection of interactions across host and pathogen organisms hinders this process. Here we apply a simple method to predict protein-protein interactions across a host and pathogen organisms. We use homology detection approaches against the protein-protein interaction databases. DIP and iPfam in order to predict interacting proteins in a host-pathogen pair. In the present work, we first applied this approach to the test cases involving the pairs phage T4 - Escherichia coli and phage lambda - E. coli and show that previously known interactions could be recognized using our approach. We further apply this approach to predict interactions between human and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis. We identified several novel interactions involving proteins of host or pathogen that could be thought of as highly relevant to the disease process. Serendipitously, many interactions involve hypothetical proteins of yet unknown function. Hypothetical proteins are predicted from computational analysis of genome sequences with no laboratory analysis on their functions yet available. The predicted interactions involving such proteins could provide hints to their functions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gottigere lake with a water spread area of about 14.98 ha is located in the Bellandur Lake catchment of the South Pennar River basin. In recent years, this lake catchment has been subjected to environmental stress mainly due to the rampant unplanned developmental activities in the catchment. The functional ability of the ecosystem is impaired due to structural changes in the ecosystem. This is evident from poor water quality, breeding of disease vectors, contamination of groundwater in the catchment, frequent flooding in the catchment due to topography alteration, decline in groundwater table, erosion in lake bed, etc. The development plans of the region (current as well as the proposed) ignore the integrated planning approaches considering all components of the ecosystem. Serious threats to the sustainability of the region due to lack of holistic approaches in aquatic resources management are land use changes (removal of vegetation cover, etc.), point and non-point sources of pollution impairing water quality, dumping of solid waste (building waste, etc.). Conservation of lake ecosystem is possible only when the physical and chemical integrity of its catchment is maintained. Alteration in the catchment either due to land use changes (leading to paved surface area from vegetation cover), alteration in topography, construction of roads in the immediate vicinity are detrimental to water yield in the catchment and hence, the sustenance of the lake. Open spaces in the form of lakes and parks aid as kidney and lung in an urban ecosystem, which maintain the health of the people residing in the locality. Identification of core buffer zones and conservation of buffer zones (500 to 1000 m from shore) is to be taken up on priority for conservation and sustainable management of Bangalore lakes. Bangalore is located over a ridge delineating four watersheds, viz. Hebbal, Koramangala, Challaghatta and Vrishabhavathi. Lakes and tanks are an integral part of natural drainage and help in retaining water during rainfall, which otherwise get drained off as flash floods. Each lake harvests rainwater from its catchment and surplus flows downstream spilling into the next lake in the chain. The topography of Bangalore has uniquely supported the creation of a large number of lakes. These lakes form chains, being a series of impoundments across streams. This emphasises the interconnectivity among Bangalore lakes, which has to be retained to prevent Bangalore from flooding or from water scarcity. The main source of replenishment of groundwater is the rainfall. The slope of the terrain allows most of the rainwater to flow as run-off. With the steep gradients available in the major valleys of Bangalore, the rainwater will flow out of the city within four to five hours. Only a small fraction of the rainwater infiltrates into the soil. The infiltration of water into the subsoil has declined with more and more buildings and paved road being constructed in the city. Thus the natural drainage of Bangalore is governed by flows from the central ridge to all lower contours and is connected with various tanks and ponds. There are no major rivers flowing in Bangalore and there is an urgent need to sustain these vital ecosystems through proper conservation and management measures. The proposed peripheral ring road connecting Hosur Road (NH 7) and Mysore Road (SH 17) at Gottigere lake falls within the buffer zone of the lake. This would alter the catchment integrity and hence water yield affecting flora, fauna and local people, and ultimately lead to the disappearance of Gottigere lake. Developmental activities in lake catchments, which has altered lake’s ecological integrity is in violation of the Indian Fisheries Act – 1857, the Indian Forest Act – 1927, Wildlife (Protection) Act – 1972, Water (Prevention and Control of Pollution) Act – 1974, Water (Prevention and Control of Pollution) Act – 1977, Forest (Conservation Act) – 1980, Environmental (Protection) Act – 1986, Wildlife (Protection) Amendment Act – 1991 and National Conservation Strategy and Policy Statement on Environment and Development – 1992. Considering 65% decline of waterbodies in Bangalore (during last three decades), decision makers should immediately take preventive measures to ensure that lake ecosystems are not affected. This report discusses the impacts due to the proposed infrastructure developmental activities in the vicinity of Gottigere tank.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent reports highlight the severity and the morbidity of disease caused by the long neglected malaria parasite Plasmodium vivax. Due to inherent difficulties in the laboratory-propagation of P. vivax, the biology of this parasite has not been adequately explored. While the proteome of P. falciparum, the causative agent of cerebral malaria, has been extensively explored from several sources, there is limited information on the proteome of P. vivax. We have, for the first time, examined the proteome of P. vivax isolated directly from patients without adaptation to laboratory conditions. We have identified 153 proteins from clinical P. vivax, majority of which do not show homology to any previously known gene products. We also report 29 new proteins that were found to be expressed in P. vivax for the first time. In addition, several proteins previously implicated as anti-malarial targets, were also found in our analysis. Most importantly, we found several unique proteins expressed by P. vivax. This study is an important step in providing insight into physiology of the parasite under clinical settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study reports coral mortality, driven primarily by coral diseases, around Shingle Island, Gulf of Mannar (GOM), Indian Ocean. In total, 2910 colonies were permanently monitored to assess the incidence of coral diseases and consequent mortality for 2 yr. Four types of lesions consistent with white band disease (WBD), black disease (BD), white plaque disease (WPD), and pink spot disease (PSD) were recorded from 4 coral genera: Montipora, Pocillopora, Acropora, and Porites. Porites were affected by 2 disease types, while the other 3 genera were affected by only 1 disease type. Overall disease prevalence increased from 8% (n = 233 colonies) to 41.9% (n = 1219) over the 2 yr study period. BD caused an unprecedented 100% mortality in Pocillopora, followed by 20.4 and 13.1% mortality from WBD in Montipora and Acropora, respectively. Mean disease progression rates of 0.8 +/- 1.0 and 0.6 +/- 0.5 cm mo(-1) over live coral colonies were observed for BD and WBD. Significant correlations between temperature and disease progression were observed for BD (r = 0.86, R-2 = 0.75, p < 0.001) and WBD (R-2 = 0.76, p < 0.001). This study revealed the increasing trend of disease prevalence and progression of disease over live coral in a relatively limited study area; further study should investigate the status of the entire coral reef in the GOM and the role of diseases in reef dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early diagnosis of disease is important, because therapeutic intervention is most successful before it spread to the subject. The best health screenings method could be the blood test because the blood contains thousands of bio-molecules coming as by-products from the diseased part of the organism and would be non-invasive approach. The major limitation of this approach is the very low concentrations of the analytes need to be detected. Raman spectroscopy has been proven as one of the cutting edge technique applied in the field of histology, cytology and clinical chemistry. The primary obstacle of Raman spectroscopy is the low signal intensities. One of the promising approaches to overcome that is surface enhanced Raman spectroscopy (SERS) which has opened novel opportunities for chemical and biomedical analytics. Albumin is one of the most abundant proteins in blood, produced by liver. The state of albumin in serum determines the health of the liver and kidney. Serum albumin helps to transport many small molecules such as fatty acids, bilirubin, calcium, drugs through the blood. In this study, SERS is being used for the quantification and to understand of binding mechanism serum albumin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthy human skin harbours a diverse array of microbes that comprise the skin microbiome. Commensal bacteria constitute an important component of resident microbiome and are intricately linked to skin health. Recent studies describe an association between altered skin microbial community and epidemiology of diseases, like psoriasis, atopic dermatitis etc. In this study, we compare the differences in bacterial community of lesional and non-lesional skin of vitiligo subjects. Our study reveals dysbiosis in the diversity of microbial community structure in lesional skin of vitiligo subjects. Although individual specific signature is dominant over the vitiligo-specific microbiota, a clear decrease in taxonomic richness and evenness can be noted in lesional patches. Investigation of community specific correlation networks reveals distinctive pattern of interactions between resident bacterial populations of the two sites (lesional and non-lesional). While Actinobacterial species constitute the central regulatory nodes (w.r.t. degree of interaction) in non-lesional skin, species belonging to Firmicutes dominate on lesional sites. We propose that the changes in taxonomic characteristics of vitiligo lesions, as revealed by our study, could play a crucial role in altering the maintenance and severity of disease. Future studies would elucidate mechanistic relevance of these microbial dynamics that can provide new avenues for therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the pressing need to meet an ever-increasing energy demand, the combustion systems utilizing fossil fuels have been the major contributors to carbon footprint. As the combustion of conventional energy resources continue to produce significant Green House gas (GHG) emissions, there is a strong emphasis to either upgrade or find an energy-efficient eco-friendly alternative to the traditional hydrocarbon fuels. With recent developments in nanotechnology, the ability to manufacture materials with custom tailored properties at nanoscale has led to the discovery of a new class of high energy density fuels containing reactive metallic nanoparticles (NPs). Due to the high reactive interfacial area and enhanced thermal and mass transport properties of nanomaterials, the high heat of formation of these metallic fuels can now be released rapidly, thereby saving on specific fuel consumption and hence reducing GHG emissions. In order to examine the efficacy of nanofuels in energetic formulations, it is imperative to first study their combustion characteristics at the droplet scale that form the fundamental building block for any combustion system utilizing liquid fuel spray. During combustion of such multiphase, multicomponent droplets, the phenomenon of diffusional entrapment of high volatility species leads to its explosive boiling (at the superheat limit) thereby leading to an intense internal pressure build-up. This pressure upsurge causes droplet fragmentation either in form of a microexplosion or droplet puffing followed by atomization (with formation of daughter droplets) featuring disruptive burning. Both these atomization modes represent primary mechanisms for extracting the high oxidation energies of metal NP additives by exposing them to the droplet flame (with daughter droplets acting as carriers of NPs). Atomization also serves as a natural mechanism for uniform distribution and mixing of the base fuel and enhancing burning rates (due to increase in specific surface area through formation of smaller daughter droplets). However, the efficiency of atomization depends on the thermo-physical properties of the base fuel, NP concentration and type. For instance, at dense loading NP agglomeration may lead to shell formation which would sustain the pressure upsurge and hence suppress atomization thereby reducing droplet gasification rate. Contrarily, the NPs may act as nucleation sites and aid boiling and the radiation absorption by NPs (from the flame) may lead to enhanced burning rates. Thus, nanoadditives may have opposing effects on the burning rate depending on the relative dominance of processes occurring at the droplet scale. The fundamental idea in this study is to: First, review different thermo-physical processes that occur globally at the droplet and sub-droplet scale such as surface regression, shell formation due to NP agglomeration, internal boiling, atomization/NP transport to flame zone and flame acoustic interaction that occur at the droplet scale and second, understand how their interaction changes as a function of droplet size, NP type, NP concentration and the type of base fuel. This understanding is crucial for obtaining phenomenological insights on the combustion behavior of novel nanofluid fuels that show great promise for becoming the next-generation fuels. (C) 2016 Elsevier Ltd. All rights reserved.