272 resultados para Monic orthogonal polynomials

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent years a large number of investigators have devoted their efforts to the study of flow and heat transfer in rarefied gases, using the BGK [1] model or the Boltzmann kinetic equation. The velocity moment method which is based on an expansion of the distribution function as a series of orthogonal polynomials in velocity space, has been applied to the linearized problem of shear flow and heat transfer by Mott-Smith [2] and Wang Chang and Uhlenbeck [3]. Gross, Jackson and Ziering [4] have improved greatly upon this technique by expressing the distribution function in terms of half-range functions and it is this feature which leads to the rapid convergence of the method. The full-range moments method [4] has been modified by Bhatnagar [5] and then applied to plane Couette flow using the B-G-K model. Bhatnagar and Srivastava [6] have also studied the heat transfer in plane Couette flow using the linearized B-G-K equation. On the other hand, the half-range moments method has been applied by Gross and Ziering [7] to heat transfer between parallel plates using Boltzmann equation for hard sphere molecules and by Ziering [83 to shear and heat flow using Maxwell molecular model. Along different lines, a moment method has been applied by Lees and Liu [9] to heat transfer in Couette flow using Maxwell's transfer equation rather than the Boltzmann equation for distribution function. An iteration method has been developed by Willis [10] to apply it to non-linear heat transfer problems using the B-G-K model, with the zeroth iteration being taken as the solution of the collisionless kinetic equation. Krook [11] has also used the moment method to formulate the equivalent continuum equations and has pointed out that if the effects of molecular collisions are described by the B-G-K model, exact numerical solutions of many rarefied gas-dynamic problems can be obtained. Recently, these numerical solutions have been obtained by Anderson [12] for the non-linear heat transfer in Couette flow,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetohydrodynamics (MHD) flow of a conducting, homogeneous incompressible Rivlin-Ericksen fluid of second grade contained between two infinite, parallel, insulated disks rotating with the same angular velocity about two noncoincident axes, under the application of a uniform transverse magnetic field, is investigated. This model represents the MHD flow of the fluid in the instrument called an orthogonal rheometer, except for the fact that in the rheometer the rotating plates are necessarily finite. An exact solution of the governing equations of motion is presented. The force components in the x and y directions on the disks are calculated. The effects of magnetic field and the viscoelastic parameter on the forces are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average Power Ratio (PAPR) and avoid the problem of switching off antennas. But square CODs for 2(a) antennas with a + 1. complex variables, with no zero entries were discovered only for a <= 3 and if a + 1 = 2(k), for k >= 4. In this paper, a method of obtaining no zero entry (NZE) square designs, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. Then, starting from a so constructed NZE CPOD for n = 2(a+1) antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas, successively. Compared to the CODs, CPODs have slightly more ML decoding complexity for rectangular QAM constellations and the same ML decoding complexity for other complex constellations. Using the recently constructed NZE CODs for 8 antennas our method leads to NZE CPODs for 16 antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulation results show that bit error performance of our codes is same as that of the CODs under average power constraint and superior to CODs under peak power constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new digital polynomial generator using the principle of dual-slope analogue-to-digital conversion is proposed. Techniques for realizing a wide range of integer as well as fractional coefficients to obtain the desired polynomial have been discussed. The suitability of realizing the proposed polynomial generator in integrated circuit form is also indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the method of ultraspherical polynomial approximation is applied to study the steady-state response in forced oscillations of a third-order non-linear system. The non-linear function is expanded in ultraspherical polynomials and the expansion is restricted to the linear term. The equation for the response curve is obtained by using the linearized equation and the results are presented graphically. The agreement between the approximate solution and the analog computer solution is satisfactory. The problem of stability is not dealt with in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the Krylov-Bogoliubov-Mitropolskii-Popov asymptotic method is used to determine the transient response of third-order non-linear systems. Instead of averaging the non-linear functions over a cycle, they are expanded in ultraspherical polynomials and the constant term is retained. The resulting equations are solved to obtain the approximate solution. A numerical example is considered and the approximate solution is compared with the digital solution. The results show that there is good agreement between the two values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relation between optical Barker codes and self-orthogonal convolutional codes is pointed out. It is then used to update the results in earlier publication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A super-secondary structural motif comprising two orthogonally oriented beta-strands connected by short linking segments of <5 residues has been identified from a data set of 65 independent protein crystal structures. Of the 42 examples from 14 proteins, a vast majority have only a single residue as the linking element. Analysis of the conformational angles at the junction reveals that the recently described type VIII beta-turn occurs frequently at the connecting hinge, while the type II beta-turn is also fairly common.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the transmission of correlated Gaussian sources over orthogonal Gaussian channels. It is shown that the Amplify and Forward (AF) scheme which simplifies the design of encoders and the decoder, performs close to the optimal scheme even at high SNR. Also, it outperforms a recently proposed scalar quantizer scheme both in performance and complexity. We also study AF when there is side information at the encoders and decoder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A half-duplex constrained non-orthogonal cooperative multiple access (NCMA) protocol suitable for transmission of information from N users to a single destination in a wireless fading channel is proposed. Transmission in this protocol comprises of a broadcast phase and a cooperation phase. In the broadcast phase, each user takes turn broadcasting its data to all other users and the destination in an orthogonal fashion in time. In the cooperation phase, each user transmits a linear function of what it received from all other users as well as its own data. In contrast to the orthogonal extension of cooperative relay protocols to the cooperative multiple access channels wherein at any point of time, only one user is considered as a source and all the other users behave as relays and do not transmit their own data, the NCMA protocol relaxes the orthogonality built into the protocols and hence allows for a more spectrally efficient usage of resources. Code design criteria for achieving full diversity of N in the NCMA protocol is derived using pair wise error probability (PEP) analysis and it is shown that this can be achieved with a minimum total time duration of 2N - 1 channel uses. Explicit construction of full diversity codes is then provided for arbitrary number of users. Since the Maximum Likelihood decoding complexity grows exponentially with the number of users, the notion of g-group decodable codes is introduced for our setup and a set of necesary and sufficient conditions is also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-time codes from complex orthogonal designs (CODs) with no zero entries offer low Peak to Average power ratio (PAPR) and avoid the problem of turning off antennas. But CODs for 2(a) antennas with a + 1 complex variables, with no zero entries are not known in the literature for a >= 4. In this paper, a method of obtaining no zero entry (NZE) codes, called Complex Partial-Orthogonal Designs (CPODs), for 2(a+1) antennas whenever a certain type of NZE code exists for 2(a) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE CPODs for 16 antennas. Moreover, starting from certain NZE CPODs for n antennas, a construction procedure is given to obtain NZE CPODs for 2n antennas. The class of CPODs do not offer full-diversity for all complex constellations. For the NZE CPODs presented in the paper, conditions on the signal sets which will guarantee full-diversity are identified. Simulations results show that bit error performance of our codes under average power constraint is same as that of the CODs and superior to CODs under peak power constraint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zero entries in complex orthogonal designs (CODs) impede their practical implementation. In this paper, a method of obtaining a no zero entry (NZE) code for 2(k+1) antennas whenever a NZE code exists for 2(k) antennas is presented. This is achieved with slight increase in the ML decoding complexity for regular QAM constellations and no increase for other complex constellations. Since NZE CODs have been constructed recently for 8 antennas our method leads to NZE codes for 16 antennas. Simulation results show good performance of our new codes compared to the well known constructions for 16 and 32 antennas under peak power constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Space-time block codes (STBCs) obtained from non-square complex orthogonal designs are bandwidth efficient compared to those from square real/complex orthogonal designs for colocated coherent MIMO systems and has other applications in (i) non-coherent MIMO systems with non-differential detection, (ii) Space-Time-Frequency codes for MIMO-OFDM systems and (iii) distributed space-time coding for relay channels. Liang (IEEE Trans. Inform. Theory, 2003) has constructed maximal rate non-square designs for any number of antennas, with rates given by [(a+1)/(2a)] when number of transmit antennas is 2a-1 or 2a. However, these designs have large delays. When large number of antennas are considered this rate is close to 1/2. Tarokh et al (IEEE Trans. Inform. Theory, 1999) have constructed rate 1/2 non-square CODs using the rate-1 real orthogonal designs for any number of antennas, where the decoding delay of these codes is less compared to the codes constructed by Liang for number of transmit antennas more than 5. In this paper, we construct a class of rate-1/2 codes for arbitrary number of antennas where the decoding delay is reduced by 50% when compared with the rate-1/2 codes given by Tarokh et al. It is also shown that even though scaling the variables helps to lower the delay it can not be used to increase the rate.