7 resultados para Monasticism and religious orders
em Indian Institute of Science - Bangalore - Índia
Resumo:
The variable temperature proton and ambient temperature carbon-13 NMR spectra of S-methyl dithiocarbamate esters have been recorded. The results of the theoretical energy calculations (CNDO/2 and EHT types) together with the experimental data have been interpreted in terms of the molecular conformations. The barrier heights for the rotation about the thioamide C—N bond are calculated using the CNDO/2 method and the results are discussed in terms of the computed charge densities and bond orders.
Resumo:
We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long-range order, and a homogeneous state with coexistence of superfluidity and antiferromagnetism. Using a variational formalism, we show that the energy density of a hole e(hole)(x) has a minimum at doping x = x(c) that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is, however, found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest-neighbor hopping t-J model.
Resumo:
Sacred groves are patches of forests preserved for their spiritual and religious significance. The practice gained relevance with the spread of agriculture that caused large-scale deforestation affecting biodiversity and watersheds. Sacred groves may lose their prominence nowadays, but are still relevant in Indian rural landscapes inhabited by traditional communities. The recent rise of interest in this tradition encouraged scientific study that despite its pan-Indian distribution, focused on India's northeast, Western Ghats and east coast either for their global/regional importance or unique ecosystems. Most studies focused on flora, mainly angiosperms, and the faunal studies concentrated on vertebrates while lower life forms were grossly neglected. Studies on ecosystem functioning are few although observations are available. Most studies attributed watershed protection values to sacred groves but hardly highlighted hydrological process or water yield in comparison with other land use types. The grove studies require diversification from a stereotyped path and must move towards creating credible scientific foundations for conservation. Documentation should continue in unexplored areas but more work is needed on basic ecological functions and ecosystem dynamics to strengthen planning for scientifically sound sacred grove management.
Resumo:
We report temperature-dependent magnetic and electron paramagnetic resonance (EPR) properties of bulk and nanoparticle samples of Bi0.1Ca0.9MnO3 (BCMO). The nanoparticles of BCMO (dia similar to 50 nm) were prepared by the standard sol-gel technique and bulk samples by solid-state reaction method. We have investigated the magnetic ordering in the two samples by carrying out temperature-dependent magnetic and EPR studies and compared their properties. According to earlier reports, antiferromagnetic and ferromagnetic orders coexist in the bulk sample of Bi0.1Ca0.9MnO3. Our magnetization and EPR results show the existence of ferromagnetism in the bulk sample which is present in the nanosample as well but with somewhat weakened strength with the size reduction.
Resumo:
Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10(12) K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Semiconducting Cu3BiS3 (CBS) thin films were deposited by co-evaporation of Cu, Bi elemental metallic precursors, with in situ sulphurisation, using a quartz effusion cell. Cu3BiS3 thin films were structurally characterized by XRD and FE-SEM. The chemical bonding of the ions was examined by XPS. As deposited films were demonstrated for metal-semiconductor-metal near IR photodectection under lamp and laser illuminations. The photo current amplified to three orders and two orders of magnitude upon the IR lamp and 60 m W cm(-2) 1064 nm IR laser illuminations, respectively. Larger grains, made up of nano needle bunches aided the transport of carriers. Transport properties were explained based on the trap assisted space charge conduction mechanism. Steady state detector parameters like responsivity varied from 1.04 AW(-1) at 60 m Wcm(-2) to 0.22 AW(-1) at 20 m Wcm(-2). Detector sensitivity of 295 was found to be promising and further could be tuned for better responsivity and efficiency in utilization of near infra-red photodetector. (C) 2014 AIP Publishing LLC.