403 resultados para Molecular dissociation
em Indian Institute of Science - Bangalore - Índia
Resumo:
The theoretical estimation of the dissociation constant, or pK(a), of weak acids continues to be a challenging field. Here, we show that ab initio CarParrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free-energy profile of the dissociation reaction provide reasonable estimates of the pK(a) value. Water molecules, sufficient to complete the three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. The free-energy profiles exhibit two distinct minima corresponding to the dissociated and neutral states of the acid, and the difference in their values provides the estimate for pK(a). We show for a series of organic acids that CPMD simulations in conjunction with metadynamics can provide reasonable estimates of pK(a) values. The acids investigated were aliphatic carboxylic acids, chlorine-substituted carboxylic acids, cis- and trans-butenedioic acid, and the isomers of hydroxybenzoic acid. These systems were chosen to highlight that the procedure could correctly account for the influence of the inductive effect as well as hydrogen bonding on pK(a) values of weak organic acids. In both situations, the CPMD metadynamics procedure faithfully reproduces the experimentally observed trend and the magnitudes of the pK(a) values.
Resumo:
Estimation of the dissociation constant, or pK(a), of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pK(a) values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pK(a), the acid dissociation constant. We show that the method predicts the pK(a) value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pK(a) values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.
Resumo:
The octameric nucleosomal core-histone complex, (H2A)2-(H2B)2-(H3)2-(H4)2, isolated from rat liver, undergoes dissociation during gel exclusion chromatography as a result of dilution occurring in the columns. The elution pattern at pH 7.0 and 4°C showed a sharp leading peak containing all four histones but predominantly H3 and H4, and a trailing peak containing equal amounts of histones H2A and H2B. As column length was increased the area under the leading peak decreased and that under the trailing peak increased. In addition the relative positions of the two peaks varied with column length. From an analysis of the data on increase in elution volume of the leading peak in relation to column length an apparent molecular weight of 86 000 was calculated for the undissociated molecule. Its apparent molecular weight, histone composition and pattern of further dissociation in relation to column length suggest that this species is the hexamer, (H2A-H2B)-(H3)2-(H4)2. At pH 7.0 and 4°C the dissociation of the core complex appears to be as follows: (H2A)2-(H2B)2-(H3)2-(H4)2 → (H2A-H2B) + (H2A-H2B)-(H3)2-(H4)2 → 2(H2A-H2B) + (H3)2-(H4)2 This dissociation was accelerated by an increase in temperature or decrease in pH and was accompanied by marked conformational changes as judged by circular dichroism measurements.
Resumo:
Dielectric measurements have been made on a number of molecular complexes of beryllium, zinc, cadmium and mercuric halides. The polarizations observed have been interpreted in terms of a tetrahedral configuration for the undissociated beryllium, zinc and cadmium halide complexes. In other cases the observed polarization has been shown to be due to the dissociation of the complex in solution.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Dimeric banana lectin and calsepa, tetrameric artocarpin and octameric heltuba are mannose-specific beta-prism I fold lectins of nearly the same tertiary structure. MD simulations on individual subunits and the oligomers provide insights into the changes in the structure brought about in the protomers on oligomerization, including swapping of the N-terminal stretch in one instance. The regions that undergo changes also tend to exhibit dynamic flexibility during MD simulations. The internal symmetries of individual oligomers are substantially retained during the calculations. Energy minimization and simulations were also carried out on models using all possible oligomers by employing the four different protomers. The unique dimerization pattern observed in calsepa could be traced to unique substitutions in a peptide stretch involved in dimerization. The impossibility of a specific mode of oligomerization involving a particular protomer is often expressed in terms of unacceptable steric contacts or dissociation of the oligomer during simulations. The calculations also led to a rationale for the observation of a heltuba tetramer in solution although the lectin exists as an octamer in the crystal, in addition to providing insights into relations among evolution, oligomerization and ligand binding.
Resumo:
Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
The formation of the helical morphology in monolayers and bilayers of chiral amphiphilic assemblies is believed to be driven at least partly by the interactions at the chiral centers of the amphiphiles. However, a detailed microscopic understanding of these interactions and their relation with the helix formation is still not clear. In this article a study of the molecular origin of the chirality-driven helix formation is presented by calculating, for the first time, the effective pair potential between a pair of chiral molecules. This effective potential depends on the relative sizes of the groups attached to the two chiral centers, on the orientation of the amphiphile molecules, and also on the distance between them. We find that for the mirror-image isomers (in the racemic modification) the minimum energy conformation is a nearly parallel alignment of the molecules. On the other hand, the same for a pair of molecules of one kind of enantiomer favors a tilt angle between them, thus leading to the formation of a helical morphology of the aggregate. The tilt angle is determined by the size of the groups attached to the chiral centers of the pair of molecules considered and in many cases predicted it to be close to 45 degrees. The present study, therefore, provides a molecular origin of the intrinsic bending force, suggested by Helfrich (J. Chem. Phys. 1986, 85, 1085-1087), to be responsible for the formation of helical structure. This effective potential may explain many of the existing experimental results, such as the size and the concentration dependence of the formation of helical morphology. It is further found that the elastic forces can significantly modify the pitch predicted by the chiral interactions alone and that the modified real pitch is close to the experimentally observed value. The present study is expected to provide a starting point for future microscopic studies.
Resumo:
We report on spectroscopic studies of the chiral structure in phospholipid tubules formed in mixtures of alcohol and water. Synthetic phospholipids containing diacetylenic moieties in the acyl chains self-assemble into hollow, cylindrical tubules in appropriate conditions. Circular dichroism provides a direct measure of chirality of the molecular structure. We find that the CD spectra of tubules formed in mixtures of alcohol and water depends strongly on the alcohol used and the lipid concentration. The relative spectral intensity of different circular dichroism bands correlates with the number of bilayers observed using microscopy. The results provide experimental evidence that tubule formation is based on chiral packing of the lipid molecules and that interbilayer interactions are important to the tubule structure
Resumo:
Semi-rigid molecular tweezers 1, 3 and 4 bind picric acid with more than tenfold increment in tetrachloromethane as compared to chloroform.
Resumo:
Abstract: The H-1 NMR spectra of N-(2-pyridyl), N'-(3-pyridyl)ureas and N-(2-pyridyl), N'-(4-pyridyl)ureas in CDCl3 and (CD3)(2)CO have been assigned with the aid of COSY and NOE experiments and chemical shift and coupling constant correlations, The C-13 NMR spectra in CDCl3 were analysed utilizing the HETCOR and proton coupled spectra, The H-1 NMR spectra, NOE effects and MINDO/3 calculations have been utilized to show that the molecular conformation of these compounds has the 2-pyridyl ring coplanar with the urea plane with the N-H group hydrogen bonded to the nitrogen of the 2-pyridyl group on the other urea nitrogen while the 3/4-pyridyl group rotates rapidly about the N-C-3/N-C-4 bond.
Resumo:
UVPES studies and ab initio and DFT computations have been done on the benzene...ICl complex; electron spectral data and computed orbital energies show that donor orbitals are stabilized and acceptor orbitals are destabilized due to complexation. Calculations predict an oblique structure for the complex in which the interacting site is a C=C bond center in the donor and iodine atom in the acceptor, in full agreement with earlier experimental reports. BSSE-corrected binding energies closely match the enthalpy of complexation reported, and the NBO analysis clearly reveals the involvement of the pi orbital of benzene and the sigma* orbital of ICl in the complex.
Resumo:
Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.