118 resultados para Modern Physics

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Quantum fields written on noncommutative spacetime (Groenewold-Moyal plane) obey twisted commutation relations. In this paper we show that these twisted commutation relations result in Hanbury-Brown Twiss (HBT) correlations that are distinct from that for ordinary bosonic or fermionic fields, and hence can provide useful information about underlying noncommutative nature of spacetime. The deviation from usual bosonic/fermionic statistics becomes pronounced at high energies, suggesting that a natural place is to look at Ultra High Energy Cosmic Rays (UHECRs). Since the HBT correlations are sensitive only to the statistics of the particles, observations done with UHECRs are capable of providing unambiguous signatures of noncommutativity, with-out any detailed knowledge of the mechanism and source of origin of UHECRs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We clarify important physics issues related to the recently established new mass limit for magnetized white dwarfs which is significantly super-Chandrasekhar. The issues include, justification of high magnetic field and the corresponding formation of stable white dwarfs, contribution of the magnetic field to the total density and pressure, flux freezing, variation of magnetic field and related currents therein. We also attempt to address the observational connection of such highly magnetized white dwarfs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low cost 12 T pulsed magnet system has been integrated with a closed-cycle helium refrigerator. The copper solenoid is directly immersed in liquid nitrogen for reduced electrical resistance and more efficient heat transfer. This ensures a minimal delay of few minutes between pulses. The sample is mounted on the cold finger of the refrigerator and, along with the surrounding vacuum shroud, is inserted into the bore of the solenoid. When combined with software lock-in signal processing to reduce noise, quick but accurate measurements can be performed at temperatures 4 K-300 K up to 12 T. Quantum Hall effect data in a p-channel SiGe/Si heterostructure has been used to calibrate the instrument against a commercial superconducting magnet. Its versatility as a routine characterization tool is demonstrated bymeasuring parallel conduction in Si/SiGe modulation doped heterostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A first order optical system is investigated in full generality within the context of wave optics. The problem is reduced to a study of the ray transfer matrices. The simplest such systems correspond to axially symmetric propagation. Realization of such systems by centrally located lenses separated by finite distances is studied. It is shown that, contrary to the commonly held view, the set of first order systems that can be realized using axially symmetric thin lenses exhausts the entire SL(2, R) group; at most three lenses are needed to realize any element of this group. In particular, the inverse of free propagation can be so realized. Among anisotropic systems it is again shown that every element of the lens group Sp(4, R) can be realized using a finite number of thin lenses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of sodium tungsten bronzes NaxWO3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of NaxWO3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating NaxWO3 the states near the Fermi level (E-F) are localized due to the strong disorder caused by the random distribution of Na+ ions in WO3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at E-F. In the metallic regime the states near E-F are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Gamma(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t(2g) band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) point similar to the one at the Gamma(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO6 octahedra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The co-doping effect of Zn and Pr impurities in the compound of composition Y1-xPrxBa2[Cu1-yZny](3)O7-delta with x = 0.1, x = 0.2 and 0 <= y <= 0.1 has been investigated by analyzing the results of electrical resistivity measurements. It is found that for Pr substitution at x = 0.1, there is a minimal influence on in-plane processes, thereby slightly affecting T-c and residual resistivity rho(0), but with the resistivity slope d rho/dT becoming large for the range of y from 0.03 to 0.06, leading to a larger depinning effect. For x = 0.2 a drastic change is observed whereby rho(0) becomes abnormally large, and d rho/dT becomes negative, implying totally pinned charge stripes and no depinning. The second observation therefore suggests that Pr substitution converts the overdoped system to an optimally doped system, leading to the universal superconductor-insulator transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate a version of noncommutative QED where the interaction term, although natural, breaks the spin-statistics connection. We calculate e(-) + e(-) -> e(-) + e(-) and gamma + e(-) -> gamma + e(-) cross-sections in the tree approximation and explicitly display their dependence on theta(mu nu). Remarkably the zero of the elastic e(-) + e(-) -> e(-) + e(-) cross-section at 90 degrees in the center-of-mass system, which is due to Pauli principle, is shifted away as a function of theta(mu nu) and energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We mention here an unusual disorder effect in manganites, namely the ubiquitous hopping behavior for electron transport observed in them over a wide range of doping. We argue that the implied Anderson localization is intrinsic to manganites, because of the existence of polarons in them which are spatially localized, generally at random sites (unless there is polaron ordering). We have developed a microscopic two fluid lb model for manganites, where l denotes lattice site localized l polarons, and b denotes band electrons. Using this, and the self-consistent theory of localization, we show that the occupied b states are Anderson localized in a large range of doping due to the scattering of b electrons from l polarons. Numerical simulations which further include the effect of long range Coulomb interactions support this, as well the existence of a novel polaronic Coulomb glass. A consequence is the inevitable hopping behaviour for electron transport observed in doped insulating manganites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A continuous procedure is presented for euclideanization of Majorana and Weyl fermions without doubling their degrees of freedom. The Euclidean theory so obtained is SO(4) invariant and Osterwalder-Schrader (OS) positive. This enables us to define a one-complex parameter family of the N=1 supersymmetric Yang-Mills (SSYM) theories which interpolate between the Minkowski and a Euclidean SSYM theory. The interpolating action, and hence the Euclidean action, manifests all the continous symmetries of the original Minkowski space theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The properties of the ground state of N anyons in an external magnetic field and a harmonic oscillator potential are computed in the large-N limit using the Thomas-Fermi approximation. The number of level crossings in the ground state as a function of the harmonic frequency, the strength and the direction of the magnetic field and N are also studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new theory of gravitation has been proposed in a more general space-time than Riemannian. It is a generalization of the ECSK and Brans-Dicke (BD) theory of gravitation. It is found that, in contrast to the standard the ECSK theory, a parity-violating propagating torsion is generated by the BD scalar field. The interesting consequence of the theory is that it can successfully predict solar system experimental results to desired accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyze here the occurrence of antiferromagnetic (AFM) correlations in the half-filled Hubbard model in one and two space dimensions using a natural fermionic representation of the model and a newly proposed way of implementing the half-filling constraint. We find that our way of implementing the constraint is capable of enforcing it exactly already at the lowest levels of approximation. We discuss how to develop a systematic adiabatic expansion for the model and how Berry's phase contributions arise quite naturally from the adiabatic expansion. At low temperatures and in the continuum limit the model gets mapped onto an O(3) nonlinear sigma model (NLsigma). A topological, Wess-Zumino term is present in the effective action of the ID NLsigma as expected, while no topological terms are present in 2D. Some specific difficulties that arise in connection with the implementation of an adiabatic expansion scheme within a thermodynamic context are also discussed, and we hint at possible solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is a review of our work related to Raman studies of single layer and bilayer graphenes as a function Fermi level shift achieved by electrochemically top gating a field effect transistor. Combining the transport and in situ Raman studies of the field effect devices, a quantitative understanding is obtained of the phonon renormalization due to doping of graphene. Results are discussed in the light of time dependent perturbation theory, with electron phonon coupling parameter as an input from the density functional theory. It is seen that phonons near and Gamma and K points of the Brillouin zone are renormalized very differently by doping. Further, Gamma-phonon renormalization is different in bilayer graphene as compared to single layer, originating from their different electronic band structures near the zone boundary K-point. Thus Raman spectroscopy is not only a powerful probe to characterize the number of layers and their quality in a graphene sample, but also to quantitatively evaluate electron phonon coupling required to understand the performance of graphene devices.