7 resultados para Model Participation Rules

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate experimental determination of the solubilities of antibiotics and anti-inflammatory drugs in supercritical fluids (SCFs) and correlations are essential for the development of supercritical technologies for the pharmaceuticals industry. In this work, the solubilities of penicillinG, penicillinV, flurbiprofen, ketoprofen, naproxen, ibuprofen, aspirin and diflunisal in supercritical carbon dioxide (SCCO2) were correlated using Peng-Robinson equation of state (PR EOS) with the modified Kwak and Mansoori mixing rules (mKM) and with Bartle model. The ability of mKM rules was compared against the conventional mixing rules of van der Waals in correlating the solubilities. In the present model, vapor pressure was considered as an adjustable parameter along with binary interactions parameters. In the proposed model, the constants used in the mixing rule, and vapor pressure expression coefficients are temperature independent. The optimization of these constants with experimental data gives binary interaction parameters along with vapor pressure correlations. Sublimation enthalpies were estimated with both the models compared with literature reported experimental values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of nets, called S-nets, is introduced for the performance analysis of scheduling algorithms used in real-time systems Deterministic timed Petri nets do not adequately model the scheduling of resources encountered in real-time systems, and need to be augmented with resource places and signal places, and a scheduler block, to facilitate the modeling of scheduling algorithms. The tokens are colored, and the transition firing rules are suitably modified. Further, the concept of transition folding is used, to get intuitively simple models of multiframe real-time systems. Two generic performance measures, called �load index� and �balance index,� which characterize the resource utilization and the uniformity of workload distribution, respectively, are defined. The utility of S-nets for evaluating heuristic-based scheduling schemes is illustrated by considering three heuristics for real-time scheduling. S-nets are useful in tuning the hardware configuration and the underlying scheduling policy, so that the system utilization is maximized, and the workload distribution among the computing resources is balanced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle's neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).