220 resultados para Mixture of pesticides

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyvanadate solutions obtained by extracting vanadium pentoxide with dilute alkali over a period of several hours contained increasing amounts of decavanadate as characterized by NMR and ir spectra. Those solutions having a metavanadate:decavanadate ratio in the range of 1-5 showed maximum stimulation of NADH oxidation by rat liver plasma membranes. Reduction of decavanadate, but not metavanadate, was obtained only in the presence of the plasma membrane enzyme system. High simulation of activity of NADH oxidation was obtained with a mixture of the two forms of vanadate and this further increased on lowering the pH. Addition of increasing concentrations of decavanadate to metavanadate and vice versa increased the stimulatory activity, reaching a maximum when the metavanadate:decavanadate ratio was in the range of 1-5. Increased stimulatory activity can also be obtained by reaching these ratios by conversion of decavanadate to metavanadate by alkaline phosphate degradation, and of metavanadate to decavanadate by acidification. These studies show for the first time that both deca and meta forms of vanadate present in polyvanadate solutions are needed for maximum activity of NADH oxidation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter the results of an experimental investigation of 1 keV electron irradiation of a 1:1 ice mixture of NH3:CO2 at 30 K was made under ultrahigh vacuum (10(-9) mbar) conditions. Molecular products formed within the ice were detected and monitored using FTIR spectroscopy. The formation of ammonium ions (NH4+), cyanate ions (OCN-), CO was observed leading to the synthesis of ammonium carbamate (NH4NH2CO2). The consequences of these results for prebiotic chemistry in the interstellar medium and star forming regions are discussed. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of an experimental investigation of 1 keV electron irradiation of ices (deposited at 30 K) of (i) pure methanol and (ii) of a 1:1 mixture of NH3:CH3OH are reported. Molecular products formed within the ice were detected and monitored using FTIR spectroscopy. The products observed were methyl formate (H3COHCO), methane (CH4), hydroxymethyl (CH2OH), formamide (HCONH2), formic acid (HCOOH), formaldehyde (H2CO), formyl radical (HCO), cyanate ion (OCN-), isocyanic acid (HNCO), carbon monoxide (CO) and carbon dioxide (CO2). The consequences of these results for prebiotic chemistry in the interstellar medium and star forming regions are discussed. Crown Copyright (C) 2012 Published by Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A binary mixture of ammonium perchlorate-sodium nitrate in molar proportion undergoes partial fusion at 223°C and the transformation of the mixture to sodium perchlorate-ammonium nitrate occurs in the broad endothermic region. The mixture was heated and quenched at various temperatures in a differential thermal analysis assembly. Thermogravimetric analysis, X-ray diffraction, and infrared spectroscopic techniques were used to determine the composition of the quenched sample in order to explain the overall thermal phenomenon. Visual observations of the morphological changes that occur during the course of heating were made using a hot-stage microscope, 30–350°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A binary mixture of ammonium perchlorate-sodium nitrate in molar proportion undergoes partial fusion at 223°C and the transformation of the mixture to sodium perchlorate-ammonium nitrate occurs in the broad endothermic region. The mixture was heated and quenched at various temperatures in a differential thermal analysis assembly. Thermogravimetric analysis, X-ray diffraction, and infrared spectroscopic techniques were used to determine the composition of the quenched sample in order to explain the overall thermal phenomenon. Visual observations of the morphological changes that occur during the course of heating were made using a hot-stage microscope, 30–350°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman spectroscopic study on Oxyfluoro Vanadate glasses containing various proportions of lithium fluoride and rubidium fluoride was carried out to see an effect of mixture of alkali on vanadium-oxygen (V-O) bond length. Glasses with a general formula 40V(2)O(5) - 30BaF(2) - (30 - x) LiF - xRbF (x = 0-30) were prepared. Room temperature Raman spectra of these glass samples were recorded in back scattering geometry. The data presented is in ``reduced Raman intensity'' form with maximum peak scaled to 100. We have used v = Aexp(BR), where A and B are fitting parameters, to correlate the bond length R with Raman scattering frequency v. We observed that variation in bond length and its distribution about a most probable value can be correlated to the alkali environment present in these glasses. We also observed that all rubidium environment around the network forming unit is more homogenous than all lithium environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Selective introduction and removal of protecting groups is of great significance in organic synthesis.l The benzyl ether function is one of the most common protecting groups for alcohols. Selective oxidative removal of the 4-methoxybenzyl (MPM) ethers in the presence of benzyl ethers made the MPM moiety an alternative protecting group, and its utility in carbohydrate chemistry is well established. Several procedures have been developed for the cleavage of the 4-methoxybenzyl moiety, e.g. DDQ oxidation (eq 1),2e lectrochemical ~xidationh,~om ogeneous electron t r a n~f e rp,~ho toinduced single electron t r an~f e rb,o~ro n trichloride-dimethyl sulfide,6e tc. However, in all these methods isolation of the alcohol from the inevitable byproduct, 4-methoxybenzaldehyde [also dichlorodicyanohydroquinone (DDHQ) in the most commonly used method employing DDQI can be troublesome. Recently Wallace and Hedgetts7 discovered that acetic acid at 90 "C cleaves the aromatic MPM ethers into the corresponding phenols and 4-methoxybenzyl acetate (eq 21, whereas the aliphatic MPM ethers generated, instead of alcohols, the corresponding acetates (eq 3). Complimentary to this methodology, herein we report that sodium cyanoborohydride and boron trifluoride etherate reductively cleaves, cleanly and efficiently, the aliphatic MPM ethers to an easily separable mixture of the corresponding alcohols and 4-methylanisole